Quadram Institute Bioscience, Norwich Research Park, NR4 7UA, UK.
Environ Microbiol. 2018 Jul;20(7):2337-2353. doi: 10.1111/1462-2920.13926. Epub 2017 Nov 10.
The gastrointestinal tract is a highly complex organ in which multiple dynamic physiological processes are tightly coordinated while interacting with a dense and extremely diverse microbial population. From establishment in early life, through to host-microbe symbiosis in adulthood, the gut microbiota plays a vital role in our development and health. The effect of the microbiota on gut development and physiology is highlighted by anatomical and functional changes in germ-free mice, affecting the gut epithelium, immune system and enteric nervous system. Microbial colonisation promotes competent innate and acquired mucosal immune systems, epithelial renewal, barrier integrity, and mucosal vascularisation and innervation. Interacting or shared signalling pathways across different physiological systems of the gut could explain how all these changes are coordinated during postnatal colonisation, or after the introduction of microbiota into germ-free models. The application of cell-based in-vitro experimental systems and mathematical modelling can shed light on the molecular and signalling pathways which regulate the development and maintenance of homeostasis in the gut and beyond.
胃肠道是一个高度复杂的器官,其中多种动态生理过程在与密集且极其多样的微生物群相互作用时被紧密协调。从生命早期的建立,到成年期的宿主-微生物共生,肠道微生物群在我们的发育和健康中起着至关重要的作用。在无菌小鼠中,肠道微生物群对肠道发育和生理学的影响突出表现在解剖和功能上的变化,影响肠道上皮、免疫系统和肠神经系统。微生物定植促进了有能力的先天和获得性黏膜免疫系统、上皮更新、屏障完整性以及黏膜血管生成和神经支配。肠道不同生理系统之间相互作用或共享的信号通路可以解释在出生后定植期间,或者在将微生物群引入无菌模型后,所有这些变化是如何被协调的。基于细胞的体外实验系统和数学模型的应用可以揭示调节肠道及其以外的发育和维持体内平衡的分子和信号通路。