Zhang Jun, Dolg Michael
Theoretical Chemistry, University of Cologne, Greinstr. 4, 50939 Cologne, Germany.
Phys Chem Chem Phys. 2015 Oct 7;17(37):24173-81. doi: 10.1039/c5cp04060d. Epub 2015 Sep 1.
Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.
团簇几何结构的全局优化在化学中具有至关重要的意义,同时也是应用数学中一个有趣的问题。在这项工作中,我们将一种相对较新的群体智能算法,即2005年提出的人工蜂群(ABC)算法引入到该领域。它受蜂群觅食行为的启发,仅需三个参数来进行控制。我们将其应用于几种性质截然不同的势函数,即库仑 - 玻恩 - 迈耶势、伦纳德 - 琼斯势、莫尔斯势、Z势和古普塔势。基准测试表明,对于长程势,ABC算法在定位全局最小值方面非常高效,而对于短程势,它有时会陷入大团簇势能面上的局部最小陷阱。我们发布了一个高效、用户友好且免费的程序“ABCluster”来实现ABC算法。它对于非专业人士和专业人士来说都是一个黑箱程序,并且可能会成为化学家研究团簇的有用工具。