Suppr超能文献

ABCluster:用于聚类全局优化的人工蜂群算法

ABCluster: the artificial bee colony algorithm for cluster global optimization.

作者信息

Zhang Jun, Dolg Michael

机构信息

Theoretical Chemistry, University of Cologne, Greinstr. 4, 50939 Cologne, Germany.

出版信息

Phys Chem Chem Phys. 2015 Oct 7;17(37):24173-81. doi: 10.1039/c5cp04060d. Epub 2015 Sep 1.

Abstract

Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.

摘要

团簇几何结构的全局优化在化学中具有至关重要的意义,同时也是应用数学中一个有趣的问题。在这项工作中,我们将一种相对较新的群体智能算法,即2005年提出的人工蜂群(ABC)算法引入到该领域。它受蜂群觅食行为的启发,仅需三个参数来进行控制。我们将其应用于几种性质截然不同的势函数,即库仑 - 玻恩 - 迈耶势、伦纳德 - 琼斯势、莫尔斯势、Z势和古普塔势。基准测试表明,对于长程势,ABC算法在定位全局最小值方面非常高效,而对于短程势,它有时会陷入大团簇势能面上的局部最小陷阱。我们发布了一个高效、用户友好且免费的程序“ABCluster”来实现ABC算法。它对于非专业人士和专业人士来说都是一个黑箱程序,并且可能会成为化学家研究团簇的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验