Suppr超能文献

通过DCE-MRI数据的广义药代动力学建模评估治疗反应。

Assessing Treatment Response Through Generalized Pharmacokinetic Modeling of DCE-MRI Data.

作者信息

Kontopodis Eleftherios, Kanli Georgia, Manikis Georgios C, Van Cauter Sofie, Marias Kostas

机构信息

Foundation for Research and Technology - Hellas (FORTH), Institute of Computer Science, Computational BioMedicine Lab, Heraklion, Greece.

Department of Radiology, University Hospitals Leuven, Leuven, Belgium.

出版信息

Cancer Inform. 2015 Aug 12;14(Suppl 4):41-51. doi: 10.4137/CIN.S19342. eCollection 2015.

Abstract

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) enables the quantification of contrast leakage from the vascular tissue by using pharmacokinetic (PK) models. Such quantitative analysis of DCE-MRI data provides physiological parameters that are able to provide information of tumor pathophysiology and therapeutic outcome. Several assumptive PK models have been proposed to characterize microcirculation in the tumoral tissue. In this paper, we present a comparative study between the well-known extended Tofts model (ETM) and the more recent gamma capillary transit time (GCTT) model, with the latter showing initial promising results in the literature. To enhance the GCTT imaging biomarkers, we introduce a novel method for segmenting the tumor area into subregions according to their vascular heterogeneity characteristics. A cohort of 11 patients diagnosed with glioblastoma multiforme with known therapeutic outcome was used to assess the predictive value of both models in terms of correctly classifying responders and nonresponders based on only one DCE-MRI examination. The results indicate that GCTT model's PK parameters perform better than those of ETM, while the segmentation of the tumor regions of interest based on vascular heterogeneity further enhances the discriminatory power of the GCTT model.

摘要

动态对比增强磁共振成像(DCE-MRI)通过使用药代动力学(PK)模型,能够对血管组织中的对比剂渗漏进行量化。对DCE-MRI数据的这种定量分析可提供生理参数,这些参数能够提供肿瘤病理生理学和治疗结果的信息。已经提出了几种假设的PK模型来表征肿瘤组织中的微循环。在本文中,我们对著名的扩展Tofts模型(ETM)和更新的γ毛细血管通过时间(GCTT)模型进行了比较研究,后者在文献中显示出初步的良好结果。为了增强GCTT成像生物标志物,我们引入了一种新方法,根据肿瘤区域的血管异质性特征将其划分为子区域。对11例诊断为多形性胶质母细胞瘤且已知治疗结果的患者进行队列研究,以评估这两种模型仅基于一次DCE-MRI检查正确区分反应者和无反应者的预测价值。结果表明,GCTT模型的PK参数比ETM模型的表现更好,而基于血管异质性对感兴趣的肿瘤区域进行分割进一步增强了GCTT模型的辨别能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验