Christensen Anders S, Elstner Marcus, Cui Qiang
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA.
Theoretische Chemische Biologie, Universität Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe, Germany.
J Chem Phys. 2015 Aug 28;143(8):084123. doi: 10.1063/1.4929335.
Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.
传统的半经验量子力学方法通常在仅包含价电子的最小基组中展开电子密度。最小基组近似会导致分子极化被低估,因此分子间相互作用能也会被低估,特别是对于涉及带电物种的分子间相互作用。在这项工作中,三阶自洽电荷密度泛函紧束缚方法(DFTB3)通过使用化学势均衡(CPE)方法的辅助响应密度和经验色散校正(D3)进行了增强。CPE和D3模型中的参数针对广泛的化学物种的高水平CCSD(T)参考相互作用能以及在DFT水平计算的偶极矩进行了拟合;还考虑了在参数化中纳入分子极化率的影响。给出了元素H、C、N、O和S的参数。与未校正的DFTB3相比,对于与一个带电物种的相互作用,均方根偏差(RMSD)相互作用能从6.07 kcal/mol提高到1.49 kcal/mol,而对于一组9个盐桥,RMSD从5.60 kcal/mol提高到1.73。对于以色散相互作用为主的大型水团簇和配合物,DFTB3-D3模型原本令人满意的性能得以保留;中性分子的极化率也有显著提高。总体而言,DFTB3-D3的CPE扩展比忽略双原子微分重叠类型的半经验方法(例如PM6-D3H4)和具有适度基组的PBE-D3能更平衡地描述不同类型的非共价相互作用。