Suppr超能文献

双重极化 QM/MM 与机器学习伴护极化率。

Doubly Polarized QM/MM with Machine Learning Chaperone Polarizability.

机构信息

Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States.

Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.

出版信息

J Chem Theory Comput. 2021 Dec 14;17(12):7682-7695. doi: 10.1021/acs.jctc.1c00567. Epub 2021 Nov 1.

Abstract

A major shortcoming of semiempirical (SE) molecular orbital methods is their severe underestimation of molecular polarizability compared with experimental and (AI) benchmark data. In a combined quantum mechanical and molecular mechanical (QM/MM) treatment of solution-phase reactions, solute described by SE methods therefore tends to generate inadequate electronic polarization response to solvent electric fields, which often leads to large errors in free energy profiles. To address this problem, here we present a hybrid framework that improves the response property of SE/MM methods through high-level molecular-polarizability fitting. Specifically, we place on QM atoms a set of corrective polarizabilities (referred to as chaperone polarizabilities), whose magnitudes are determined from machine learning (ML) to reproduce the condensed-phase AI molecular polarizability along the minimum free energy path. These chaperone polarizabilities are then used in a machinery similar to a polarizable force field calculation to compensate for the missing polarization energy in the conventional SE/MM simulations. Because QM atoms in this treatment host SE wave functions as well as classical polarizabilities, both polarized by MM electric fields, we name this method doubly polarized QM/MM (dp-QM/MM). We demonstrate the new method on the free energy simulations of the Menshutkin reaction in water. Using AM1/MM as a base method, we show that ML chaperones greatly reduce the error in the solute molecular polarizability from 6.78 to 0.03 Å with respect to the density functional theory benchmark. The chaperone correction leads to ∼10 kcal/mol of additional polarization energy in the product region, bringing the simulated free energy profiles to closer agreement with the experimental results. Furthermore, the solute-solvent radial distribution functions show that the chaperone polarizabilities modify the free energy profiles through enhanced solvation corrections when the system evolves from the charge-neutral reactant state to the charge-separated transition and product states. These results suggest that the dp-QM/MM method, enabled by ML chaperone polarizabilities, provides a very physical remedy for the underpolarization problem in SE/MM-based free energy simulations.

摘要

半经验(SE)分子轨道方法的一个主要缺点是,与实验和(AI)基准数据相比,它们严重低估了分子极化率。在溶液相反应的量子力学和分子力学(QM/MM)联合处理中,因此,用 SE 方法描述的溶质往往会对溶剂电场产生不充分的电子极化响应,这通常会导致自由能曲线出现大的误差。为了解决这个问题,我们在这里提出了一种混合框架,通过高水平的分子极化率拟合来提高 SE/MM 方法的响应特性。具体来说,我们在 QM 原子上放置了一组校正极化率(称为陪护极化率),其大小通过机器学习(ML)确定,以沿着最小自由能路径重现凝聚相 AI 分子极化率。然后,在类似于极化力场计算的机制中使用这些陪护极化率,以补偿传统 SE/MM 模拟中缺失的极化能。由于在这种处理中,QM 原子既承载 SE 波函数,又承载由 MM 电场极化的经典极化率,因此我们将这种方法命名为双极化 QM/MM(dp-QM/MM)。我们在 Menshutkin 反应在水中的自由能模拟中展示了新方法。使用 AM1/MM 作为基础方法,我们表明 ML 陪护大大降低了溶质分子极化率的误差,从相对于密度泛函理论基准的 6.78 降低到 0.03 Å。陪护修正导致产物区域中增加了约 10 kcal/mol 的额外极化能,使模拟的自由能曲线更接近实验结果。此外,当系统从电荷中性反应物状态演变为电荷分离过渡态和产物状态时,溶质-溶剂径向分布函数表明,陪护极化率通过增强溶剂化修正来改变自由能曲线。这些结果表明,由 ML 陪护极化率支持的 dp-QM/MM 方法为 SE/MM 为基础的自由能模拟中的欠极化问题提供了一种非常物理的解决方法。

相似文献

1
Doubly Polarized QM/MM with Machine Learning Chaperone Polarizability.双重极化 QM/MM 与机器学习伴护极化率。
J Chem Theory Comput. 2021 Dec 14;17(12):7682-7695. doi: 10.1021/acs.jctc.1c00567. Epub 2021 Nov 1.
5

本文引用的文献

1
4
5
Accurate molecular polarizabilities with coupled cluster theory and machine learning.基于耦合簇理论和机器学习的精确分子极化率
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3401-3406. doi: 10.1073/pnas.1816132116. Epub 2019 Feb 7.
10
QM/MM free energy simulations: recent progress and challenges.量子力学/分子力学自由能模拟:近期进展与挑战
Mol Simul. 2016;42(13):1056-1078. doi: 10.1080/08927022.2015.1132317. Epub 2016 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验