Schmidt Ruben, LaFleur Karl J R, de Reus Marcel A, van den Berg Leonard H, van den Heuvel Martijn P
Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands.
Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands.
BMC Neurosci. 2015 Sep 2;16:54. doi: 10.1186/s12868-015-0193-z.
The topological structure of the wiring of the mammalian brain cortex plays an important role in shaping the functional dynamics of large-scale neural activity. Due to their central embedding in the network, high degree hub regions and their connections (often referred to as the 'rich club') have been hypothesized to facilitate intermodular neural communication and global integration of information by means of synchronization. Here, we examined the theoretical role of anatomical hubs and their wiring in brain dynamics. The Kuramoto model was used to simulate interaction of cortical brain areas by means of coupled phase oscillators-with anatomical connections between regions derived from diffusion weighted imaging and module assignment of brain regions based on empirically determined resting-state data.
Our findings show that synchrony among hub nodes was higher than any module's intramodular synchrony (p < 10(-4), for cortical coupling strengths, λ, in the range 0.02 < λ < 0.05), suggesting that hub nodes lead the functional modules in the process of synchronization. Furthermore, suppressing structural connectivity among hub nodes resulted in an elevated modular state (p < 4.1 × l0(-3), 0.015 < λ < 0.04), indicating that hub-to-hub connections are critical in intermodular synchronization. Finally, perturbing the oscillatory behavior of hub nodes prevented functional modules from synchronizing, implying that synchronization of functional modules is dependent on the hub nodes' behavior.
Our results converge on anatomical hubs having a leading role in intermodular synchronization and integration in the human brain.
哺乳动物大脑皮层的布线拓扑结构在塑造大规模神经活动的功能动力学方面发挥着重要作用。由于高度枢纽区域及其连接(通常称为“富俱乐部”)在网络中处于核心位置,因此有人假设它们通过同步来促进模块间的神经通信和信息的全局整合。在此,我们研究了解剖学枢纽及其布线在脑动力学中的理论作用。使用Kuramoto模型通过耦合相位振荡器来模拟皮层脑区之间的相互作用,其中区域间的解剖连接源自扩散加权成像,且脑区的模块划分基于经验确定的静息态数据。
我们的研究结果表明,枢纽节点之间的同步性高于任何模块内的同步性(对于皮层耦合强度λ,在0.02 < λ < 0.05范围内,p < 10^(-4)),这表明枢纽节点在同步过程中引领功能模块。此外,抑制枢纽节点之间的结构连接会导致模块化状态升高(p < 4.1×10^(-3),0.015 < λ < 0.04),这表明枢纽到枢纽的连接在模块间同步中至关重要。最后,干扰枢纽节点的振荡行为会阻止功能模块同步,这意味着功能模块的同步依赖于枢纽节点的行为。
我们的结果表明,解剖学枢纽在人类大脑的模块间同步和整合中起主导作用。