Suppr超能文献

建模耦合振荡器网络中的大脑网络灵活性:一项可行性研究。

Modeling brain network flexibility in networks of coupled oscillators: a feasibility study.

机构信息

Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany.

Psychiatry Department, Charité-Universitätsmedizin, Berlin, Germany.

出版信息

Sci Rep. 2024 Mar 8;14(1):5713. doi: 10.1038/s41598-024-55753-8.

Abstract

Modeling the functionality of the human brain is a major goal in neuroscience for which many powerful methodologies have been developed over the last decade. The impact of working memory and the associated brain regions on the brain dynamics is of particular interest due to their connection with many functions and malfunctions in the brain. In this context, the concept of brain flexibility has been developed for the characterization of brain functionality. We discuss emergence of brain flexibility that is commonly measured by the identification of changes in the cluster structure of co-active brain regions. We provide evidence that brain flexibility can be modeled by a system of coupled FitzHugh-Nagumo oscillators where the network structure is obtained from human brain Diffusion Tensor Imaging (DTI). Additionally, we propose a straightforward and computationally efficient alternative macroscopic measure, which is derived from the Pearson distance of functional brain matrices. This metric exhibits similarities to the established patterns of brain template flexibility that have been observed in prior investigations. Furthermore, we explore the significance of the brain's network structure and the strength of connections between network nodes or brain regions associated with working memory in the observation of patterns in networks flexibility. This work enriches our understanding of the interplay between the structure and function of dynamic brain networks and proposes a modeling strategy to study brain flexibility.

摘要

对人类大脑功能进行建模是神经科学的主要目标,在过去十年中已经开发出了许多强大的方法。由于工作记忆及其相关脑区与大脑的许多功能和功能障碍有关,因此它们对大脑动力学的影响特别有趣。在这种情况下,已经提出了大脑灵活性的概念,用于描述大脑功能。我们讨论了大脑灵活性的出现,通常通过识别共同活跃的脑区的聚类结构的变化来测量。我们提供的证据表明,大脑灵活性可以通过一个耦合的 FitzHugh-Nagumo 振荡器系统来建模,其中网络结构是从人类大脑弥散张量成像(DTI)获得的。此外,我们还提出了一种简单且计算效率高的替代宏观度量方法,该方法是从功能大脑矩阵的 Pearson 距离导出的。该指标与先前研究中观察到的已建立的大脑模板灵活性模式具有相似性。此外,我们还探讨了与工作记忆相关的大脑网络结构及其节点或脑区之间连接强度在网络灵活性模式观察中的重要性。这项工作丰富了我们对动态大脑网络的结构和功能之间相互作用的理解,并提出了一种建模策略来研究大脑灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/10923875/c3abf47cb311/41598_2024_55753_Fig1_HTML.jpg

相似文献

1
Modeling brain network flexibility in networks of coupled oscillators: a feasibility study.
Sci Rep. 2024 Mar 8;14(1):5713. doi: 10.1038/s41598-024-55753-8.
2
Altered brain anatomical networks and disturbed connection density in brain tumor patients revealed by diffusion tensor tractography.
Int J Comput Assist Radiol Surg. 2016 Nov;11(11):2007-2019. doi: 10.1007/s11548-015-1330-y. Epub 2016 Feb 25.
3
Resting state networks in empirical and simulated dynamic functional connectivity.
Neuroimage. 2017 Oct 1;159:388-402. doi: 10.1016/j.neuroimage.2017.07.065. Epub 2017 Aug 3.
4
Structural Controllability Predicts Functional Patterns and Brain Stimulation Benefits Associated with Working Memory.
J Neurosci. 2020 Aug 26;40(35):6770-6778. doi: 10.1523/JNEUROSCI.0531-20.2020. Epub 2020 Jul 20.
5
Altered anatomical network in early blindness revealed by diffusion tensor tractography.
PLoS One. 2009 Sep 28;4(9):e7228. doi: 10.1371/journal.pone.0007228.
6
Validation of network communicability metrics for the analysis of brain structural networks.
PLoS One. 2014 Dec 30;9(12):e115503. doi: 10.1371/journal.pone.0115503. eCollection 2014.
7
A fast and intuitive method for calculating dynamic network reconfiguration and node flexibility.
Front Neurosci. 2023 Feb 9;17:1025428. doi: 10.3389/fnins.2023.1025428. eCollection 2023.
8
Mapping functional brain networks from the structural connectome: Relating the series expansion and eigenmode approaches.
Neuroimage. 2020 Aug 1;216:116805. doi: 10.1016/j.neuroimage.2020.116805. Epub 2020 Apr 23.
9
Integrative Bayesian analysis of brain functional networks incorporating anatomical knowledge.
Neuroimage. 2018 Nov 1;181:263-278. doi: 10.1016/j.neuroimage.2018.07.015. Epub 2018 Jul 11.

本文引用的文献

1
Modelling the perception of music in brain network dynamics.
Front Netw Physiol. 2022 Aug 29;2:910920. doi: 10.3389/fnetp.2022.910920. eCollection 2022.
2
A fast and intuitive method for calculating dynamic network reconfiguration and node flexibility.
Front Neurosci. 2023 Feb 9;17:1025428. doi: 10.3389/fnins.2023.1025428. eCollection 2023.
3
Whole-Brain Network Models: From Physics to Bedside.
Front Comput Neurosci. 2022 May 26;16:866517. doi: 10.3389/fncom.2022.866517. eCollection 2022.
5
Aberrant Subnetwork and Hub Dysconnectivity in Adult Bipolar Disorder: A Multicenter Graph Theory Analysis.
Cereb Cortex. 2022 May 14;32(10):2254-2264. doi: 10.1093/cercor/bhab356.
6
Transient neural network dynamics in cognitive ageing.
Neurobiol Aging. 2021 Sep;105:217-228. doi: 10.1016/j.neurobiolaging.2021.01.035. Epub 2021 May 14.
7
Coordinated Reset Vibrotactile Stimulation Induces Sustained Cumulative Benefits in Parkinson's Disease.
Front Physiol. 2021 Apr 6;12:624317. doi: 10.3389/fphys.2021.624317. eCollection 2021.
9
Structure-function coupling in the human connectome: A machine learning approach.
Neuroimage. 2021 Feb 1;226:117609. doi: 10.1016/j.neuroimage.2020.117609. Epub 2020 Nov 30.
10
Deep brain stimulation: Imaging on a group level.
Neuroimage. 2020 Oct 1;219:117018. doi: 10.1016/j.neuroimage.2020.117018. Epub 2020 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验