Suppr超能文献

具有区间删失生存数据的 Cox 比例风险治愈模型的暴露评估。

Exposure assessment for Cox proportional hazards cure models with interval-censored survival data.

机构信息

Division of Clinical Evidence and Analysis 2, Office of Clinical Evidence and Analysis, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA.

Department of Surgical Oncology (Interventional Therapy), Shandong Cancer Hospital and Institute, Jinan, Shandong, P. R. China.

出版信息

Biom J. 2022 Jan;64(1):91-104. doi: 10.1002/bimj.202000271. Epub 2021 Aug 10.

Abstract

Mixture cure models have been developed as an effective tool to analyze failure time data with a cure fraction. Used in conjunction with the logistic regression model, this model allows covariate-adjusted inference of an exposure effect on the cured probability and the hazard of failure for the uncured subjects. However, the covariate-adjusted inference for the overall exposure effect is not directly provided. In this paper, we describe a Cox proportional hazards cure model to analyze interval-censored survival data in the presence of a cured fraction and then apply a post-estimation approach by using model-predicted estimates difference to assess the overall exposure effect on the restricted mean survival time scale. For baseline hazard/survival function estimation, simple parametric models as fractional polynomials or restricted cubic splines are utilized to approximate the baseline logarithm cumulative hazard function, or, alternatively, the full likelihood is specified through a piecewise linear approximation for the cumulative baseline hazard function. Simulation studies were conducted to demonstrate the unbiasedness of both estimation methods for the overall exposure effect estimates over various baseline hazard distribution shapes. The methods are applied to analyze the interval-censored relapse time data from a smoking cessation study.

摘要

混合治愈模型已被开发为一种有效的工具,用于分析具有治愈分数的失效时间数据。与逻辑回归模型结合使用,该模型允许对暴露对未治愈个体的治愈概率和失效风险的影响进行协变量调整推断。然而,并没有直接提供对整体暴露效应的协变量调整推断。在本文中,我们描述了一种 Cox 比例风险治愈模型,用于分析存在治愈分数的区间 censored 生存数据,然后通过使用模型预测估计差值的后估计方法来评估在受限平均生存时间尺度上的整体暴露效应。对于基线风险/生存函数估计,简单的参数模型(如分数多项式或限制立方样条)用于近似基线对数累积风险函数,或者通过分段线性逼近累积基线风险函数来指定完整的似然函数。模拟研究表明,对于各种基线风险分布形状,这两种整体暴露效应估计的估计方法都是无偏的。该方法应用于分析戒烟研究中区间 censored 复发时间数据。

相似文献

3
geecure: An R-package for marginal proportional hazards mixture cure models.geecure:用于边缘比例风险混合治愈模型的 R 包。
Comput Methods Programs Biomed. 2018 Jul;161:115-124. doi: 10.1016/j.cmpb.2018.04.017. Epub 2018 Apr 17.
7
A support vector machine-based cure rate model for interval censored data.基于支持向量机的区间 censored 数据治愈率模型。
Stat Methods Med Res. 2023 Dec;32(12):2405-2422. doi: 10.1177/09622802231210917. Epub 2023 Nov 8.
9
Mixture proportional hazards cure model with latent variables.带有潜在变量的混合比例风险治愈模型。
Stat Med. 2021 Dec 20;40(29):6590-6604. doi: 10.1002/sim.9200. Epub 2021 Sep 15.

本文引用的文献

2
A class of semiparametric cure models with current status data.一类具有当前状态数据的半参数治愈模型。
Lifetime Data Anal. 2019 Jan;25(1):26-51. doi: 10.1007/s10985-018-9420-0. Epub 2018 Feb 8.
4
Diagnostic checks in mixture cure models with interval-censoring.带有区间删失的混合治疗模型中的诊断检查。
Stat Methods Med Res. 2018 Jul;27(7):2114-2131. doi: 10.1177/0962280216676502. Epub 2016 Nov 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验