Suppr超能文献

一种用于脑磁图/脑电图基于种子点的功能连接映射中空间泄漏效应的几何校正方案。

A geometric correction scheme for spatial leakage effects in MEG/EEG seed-based functional connectivity mapping.

作者信息

Wens Vincent, Marty Brice, Mary Alison, Bourguignon Mathieu, Op de Beeck Marc, Goldman Serge, Van Bogaert Patrick, Peigneux Philippe, De Tiège Xavier

机构信息

Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neurosciences Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.

ULB - Hôpital Erasme, Magnetoencephalography Unit, Brussels, Belgium.

出版信息

Hum Brain Mapp. 2015 Nov;36(11):4604-21. doi: 10.1002/hbm.22943. Epub 2015 Sep 2.

Abstract

Spatial leakage effects are particularly confounding for seed-based investigations of brain networks using source-level electroencephalography (EEG) or magnetoencephalography (MEG). Various methods designed to avoid this issue have been introduced but are limited to particular assumptions about its temporal characteristics. Here, we investigate the usefulness of a model-based geometric correction scheme (GCS) to suppress spatial leakage emanating from the seed location. We analyze its properties theoretically and then assess potential advantages and limitations with simulated and experimental MEG data (resting state and auditory-motor task). To do so, we apply Minimum Norm Estimation (MNE) for source reconstruction and use variation of error parameters, statistical gauging of spatial leakage correction and comparison with signal orthogonalization. Results show that the GCS has a local (i.e., near the seed) effect only, in line with the geometry of MNE spatial leakage, and is able to map spatially all types of brain interactions, including linear correlations eliminated after signal orthogonalization. Furthermore, it is robust against the introduction of forward model errors. On the other hand, the GCS can be affected by local overcorrection effects and seed mislocation. These issues arise with signal orthogonalization too, although significantly less extensively, so the two approaches complement each other. The GCS thus appears to be a valuable addition to the spatial leakage correction toolkits for seed-based FC analyses in source-projected MEG/EEG data.

摘要

对于使用源水平脑电图(EEG)或脑磁图(MEG)对脑网络进行基于种子的研究而言,空间泄漏效应尤其具有混淆性。虽然已经引入了各种旨在避免此问题的方法,但这些方法仅限于对其时间特征的特定假设。在此,我们研究一种基于模型的几何校正方案(GCS)在抑制源自种子位置的空间泄漏方面的效用。我们从理论上分析其特性,然后通过模拟和实验性MEG数据(静息状态和听觉 - 运动任务)评估其潜在优势和局限性。为此,我们应用最小范数估计(MNE)进行源重建,并使用误差参数变化、空间泄漏校正的统计测量以及与信号正交化进行比较。结果表明,GCS仅具有局部(即靠近种子)效应,这与MNE空间泄漏的几何结构一致,并且能够在空间上映射所有类型的脑交互,包括信号正交化后消除的线性相关性。此外,它对正向模型误差的引入具有鲁棒性。另一方面,GCS可能会受到局部过校正效应和种子定位错误的影响。信号正交化也会出现这些问题,尽管程度要小得多,所以这两种方法相互补充。因此,对于源投影MEG/EEG数据中基于种子的功能连接分析,GCS似乎是空间泄漏校正工具包中的一个有价值的补充。

相似文献

1
A geometric correction scheme for spatial leakage effects in MEG/EEG seed-based functional connectivity mapping.
Hum Brain Mapp. 2015 Nov;36(11):4604-21. doi: 10.1002/hbm.22943. Epub 2015 Sep 2.
3
Towards an objective evaluation of EEG/MEG source estimation methods - The linear approach.
Neuroimage. 2022 Jul 15;255:119177. doi: 10.1016/j.neuroimage.2022.119177. Epub 2022 Apr 4.
4
Phase shift invariant imaging of coherent sources (PSIICOS) from MEG data.
Neuroimage. 2018 Dec;183:950-971. doi: 10.1016/j.neuroimage.2018.08.031. Epub 2018 Aug 22.
5
Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG.
Neuroimage. 2017 Aug 15;157:531-544. doi: 10.1016/j.neuroimage.2017.06.022. Epub 2017 Jun 13.
6
EEG/MEG source imaging using fMRI informed time-variant constraints.
Hum Brain Mapp. 2018 Apr;39(4):1700-1711. doi: 10.1002/hbm.23945. Epub 2018 Jan 2.
7
Hyperedge bundling: A practical solution to spurious interactions in MEG/EEG source connectivity analyses.
Neuroimage. 2018 Jun;173:610-622. doi: 10.1016/j.neuroimage.2018.01.056. Epub 2018 Jan 31.
8
EEG-MEG Integration Enhances the Characterization of Functional and Effective Connectivity in the Resting State Network.
PLoS One. 2015 Oct 28;10(10):e0140832. doi: 10.1371/journal.pone.0140832. eCollection 2015.
10
The Impact of the Geometric Correction Scheme on MEG Functional Topology at Rest.
Front Neurosci. 2019 Oct 25;13:1114. doi: 10.3389/fnins.2019.01114. eCollection 2019.

引用本文的文献

1
Association between theta-band resting-state functional connectivity and declarative memory abilities in children.
Imaging Neurosci (Camb). 2025 May 7;3. doi: 10.1162/imag_a_00555. eCollection 2025.
2
Towards a more robust non-invasive assessment of functional connectivity.
Imaging Neurosci (Camb). 2024 Mar 28;2. doi: 10.1162/imag_a_00119. eCollection 2024.
3
The dissociative role of bursting and non-bursting neural activity in the oscillatory nature of functional brain networks.
Imaging Neurosci (Camb). 2024 Jul 17;2. doi: 10.1162/imag_a_00231. eCollection 2024.
5
Relation between the phase-lag index and lagged coherence for assessing interactions in EEG and MEG data.
Neuroimage Rep. 2021 Apr 21;1(1):100007. doi: 10.1016/j.ynirp.2021.100007. eCollection 2021 Mar.
6
Cortical parcellation optimized for magnetoencephalography with a clustering technique.
Sci Rep. 2025 Feb 21;15(1):6404. doi: 10.1038/s41598-025-90166-1.
10
Encoding Manual Dexterity through Modulation of Intrinsic α Band Connectivity.
J Neurosci. 2024 May 15;44(20):e1766232024. doi: 10.1523/JNEUROSCI.1766-23.2024.

本文引用的文献

1
Dynamic recruitment of resting state sub-networks.
Neuroimage. 2015 Jul 15;115:85-95. doi: 10.1016/j.neuroimage.2015.04.030. Epub 2015 Apr 18.
2
A symmetric multivariate leakage correction for MEG connectomes.
Neuroimage. 2015 Aug 15;117:439-48. doi: 10.1016/j.neuroimage.2015.03.071. Epub 2015 Apr 7.
3
Investigating complex networks with inverse models: analytical aspects of spatial leakage and connectivity estimation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012823. doi: 10.1103/PhysRevE.91.012823. Epub 2015 Jan 28.
4
Inter- and intra-subject variability of neuromagnetic resting state networks.
Brain Topogr. 2014 Sep;27(5):620-34. doi: 10.1007/s10548-014-0364-8. Epub 2014 Apr 29.
5
Fast transient networks in spontaneous human brain activity.
Elife. 2014 Mar 25;3:e01867. doi: 10.7554/eLife.01867.
6
Measuring temporal, spectral and spatial changes in electrophysiological brain network connectivity.
Neuroimage. 2014 May 1;91:282-99. doi: 10.1016/j.neuroimage.2013.12.066. Epub 2014 Jan 10.
7
About the electrophysiological basis of resting state networks.
Clin Neurophysiol. 2014 Aug;125(8):1711-3. doi: 10.1016/j.clinph.2013.11.039. Epub 2013 Dec 24.
10
A Subspace Pursuit-based Iterative Greedy Hierarchical solution to the neuromagnetic inverse problem.
Neuroimage. 2014 Feb 15;87:427-43. doi: 10.1016/j.neuroimage.2013.09.008. Epub 2013 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验