Wens Vincent, Marty Brice, Mary Alison, Bourguignon Mathieu, Op de Beeck Marc, Goldman Serge, Van Bogaert Patrick, Peigneux Philippe, De Tiège Xavier
Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neurosciences Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.
ULB - Hôpital Erasme, Magnetoencephalography Unit, Brussels, Belgium.
Hum Brain Mapp. 2015 Nov;36(11):4604-21. doi: 10.1002/hbm.22943. Epub 2015 Sep 2.
Spatial leakage effects are particularly confounding for seed-based investigations of brain networks using source-level electroencephalography (EEG) or magnetoencephalography (MEG). Various methods designed to avoid this issue have been introduced but are limited to particular assumptions about its temporal characteristics. Here, we investigate the usefulness of a model-based geometric correction scheme (GCS) to suppress spatial leakage emanating from the seed location. We analyze its properties theoretically and then assess potential advantages and limitations with simulated and experimental MEG data (resting state and auditory-motor task). To do so, we apply Minimum Norm Estimation (MNE) for source reconstruction and use variation of error parameters, statistical gauging of spatial leakage correction and comparison with signal orthogonalization. Results show that the GCS has a local (i.e., near the seed) effect only, in line with the geometry of MNE spatial leakage, and is able to map spatially all types of brain interactions, including linear correlations eliminated after signal orthogonalization. Furthermore, it is robust against the introduction of forward model errors. On the other hand, the GCS can be affected by local overcorrection effects and seed mislocation. These issues arise with signal orthogonalization too, although significantly less extensively, so the two approaches complement each other. The GCS thus appears to be a valuable addition to the spatial leakage correction toolkits for seed-based FC analyses in source-projected MEG/EEG data.
对于使用源水平脑电图(EEG)或脑磁图(MEG)对脑网络进行基于种子的研究而言,空间泄漏效应尤其具有混淆性。虽然已经引入了各种旨在避免此问题的方法,但这些方法仅限于对其时间特征的特定假设。在此,我们研究一种基于模型的几何校正方案(GCS)在抑制源自种子位置的空间泄漏方面的效用。我们从理论上分析其特性,然后通过模拟和实验性MEG数据(静息状态和听觉 - 运动任务)评估其潜在优势和局限性。为此,我们应用最小范数估计(MNE)进行源重建,并使用误差参数变化、空间泄漏校正的统计测量以及与信号正交化进行比较。结果表明,GCS仅具有局部(即靠近种子)效应,这与MNE空间泄漏的几何结构一致,并且能够在空间上映射所有类型的脑交互,包括信号正交化后消除的线性相关性。此外,它对正向模型误差的引入具有鲁棒性。另一方面,GCS可能会受到局部过校正效应和种子定位错误的影响。信号正交化也会出现这些问题,尽管程度要小得多,所以这两种方法相互补充。因此,对于源投影MEG/EEG数据中基于种子的功能连接分析,GCS似乎是空间泄漏校正工具包中的一个有价值的补充。