Suppr超能文献

果蝇幼虫运动过程中晚期激活的抑制性运动前中间神经元的鉴定

Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion.

作者信息

Itakura Yuki, Kohsaka Hiroshi, Ohyama Tomoko, Zlatic Marta, Pulver Stefan R, Nose Akinao

机构信息

Department of Complexity Science and Engineering Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan.

Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America.

出版信息

PLoS One. 2015 Sep 3;10(9):e0136660. doi: 10.1371/journal.pone.0136660. eCollection 2015.

Abstract

Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs' wave-like activity lagged behind that of motoneurons by several segments. Thus, GVLIs are activated when the front of a forward motor wave reaches the second or third anterior segment. We propose that GVLIs are part of the feedback inhibition system that terminates motor activity once the front of the motor wave proceeds to anterior segments.

摘要

许多类型的运动背后的节律性运动模式被认为是由中枢模式发生器(CPG)产生的。尽管在各种模式生物中进行了数十年的研究,但我们对CPG网络如何在复杂的神经系统中产生运动模式的了解仍然不完整。果蝇幼虫的底物介导运动由通过多个身体节段传播的肌肉收缩波驱动。我们使用果蝇幼虫爬行的运动电路作为模型,试图了解节段协调的节律性运动模式是如何产生的。虽然在这个系统中对肌肉、运动神经元和感觉神经元已经进行了充分的研究,但对中间神经元的身份及功能却知之甚少。我们最近的研究确定了一类谷氨酸能运动前中间神经元,即PMSI(周期阳性中间节段中间神经元),它们调节运动速度。在这里,我们报告了一类不同的谷氨酸能运动前中间神经元的鉴定,称为谷氨酸能腹外侧中间神经元(GVLI)。我们使用钙成像来寻找显示节律性活动的中间神经元,并将GVLI鉴定为在蠕动过程中显示出波状活动的中间神经元。成对的GVLI存在于每个腹部节段A1 - A7中,并在局部向背侧神经纤维区域延伸轴突,在那里它们与运动神经元形成GRASP阳性的假定突触接触。这些中间神经元表达囊泡谷氨酸转运体(vGluT),因此可能分泌谷氨酸,这是一种已知可抑制运动神经元的神经递质。这些解剖学结果表明,GVLI是在同一节段局部抑制运动神经元的运动前中间神经元。与此一致的是,用红移通道视紫红质CsChrimson对GVLI进行光遗传学激活会使爬行幼虫正在进行的蠕动停止。对GVLI和运动神经元活动的同步钙成像显示,GVLI的波状活动比运动神经元的活动落后几个节段。因此,当向前运动波的前端到达第二或第三前节段时,GVLI被激活。我们提出,GVLI是反馈抑制系统的一部分,一旦运动波的前端向前节段推进,该系统就会终止运动活动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验