Organic Semiconductor Centre and Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK.
Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., Kurt-Schwabe-Str. 4, 04736, Waldheim, Germany.
Nat Commun. 2020 Dec 7;11(1):6248. doi: 10.1038/s41467-020-20013-6.
Optogenetics allows light-driven, non-contact control of neural systems, but light delivery remains challenging, in particular when fine spatial control of light is required to achieve local specificity. Here, we employ organic light-emitting diodes (OLEDs) that are micropatterned into linear arrays to obtain precise optogenetic control in Drosophila melanogaster larvae expressing the light-gated activator CsChrimson and the inhibitor GtACR2 within their peripheral sensory system. Our method allows confinement of light stimuli to within individual abdominal segments, which facilitates the study of larval behaviour in response to local sensory input. We show controlled triggering of specific crawling modes and find that targeted neurostimulation in abdominal segments switches the direction of crawling. More broadly, our work demonstrates how OLEDs can provide tailored patterns of light for photo-stimulation of neuronal networks, with future implications ranging from mapping neuronal connectivity in cultures to targeted photo-stimulation with pixelated OLED implants in vivo.
光遗传学允许光驱动、非接触式的神经控制系统控制,但光传递仍然具有挑战性,特别是当需要精细的空间光控制来实现局部特异性时。在这里,我们采用有机发光二极管(OLED),将其微图案化为线性阵列,以在表达光门激活剂 CsChrimson 和抑制剂 GtACR2 的黑腹果蝇幼虫的外周感觉系统中获得精确的光遗传学控制。我们的方法可以将光刺激限制在单个腹部节段内,这有助于研究幼虫对局部感觉输入的反应行为。我们展示了特定爬行模式的受控触发,并发现腹部节段的靶向神经刺激会改变爬行方向。更广泛地说,我们的工作表明 OLED 如何为神经元网络的光刺激提供定制的光模式,这为从培养物中的神经元连接映射到体内像素化 OLED 植入物的靶向光刺激等未来应用提供了可能。