Suppr超能文献

基于微分几何的CT图像中肺结节边界粗糙度特征化技术。

Differential geometry-based techniques for characterization of boundary roughness of pulmonary nodules in CT images.

作者信息

Dhara Ashis Kumar, Mukhopadhyay Sudipta, Saha Pramit, Garg Mandeep, Khandelwal Niranjan

机构信息

Department of Electronics and Electrical, Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.

Department of Electrical Engineering, Jadavpur University, Kolkata, 700032, India.

出版信息

Int J Comput Assist Radiol Surg. 2016 Mar;11(3):337-49. doi: 10.1007/s11548-015-1284-0. Epub 2015 Sep 4.

Abstract

PURPOSE

Boundary roughness of a pulmonary nodule is an important indication of its malignancy. The irregularity of the shape of a nodule is represented in terms of a few diagnostic characteristics such as spiculation, lobulation, and sphericity. Quantitative characterization of these diagnostic characteristics is essential for designing a content-based image retrieval system and computer-aided system for diagnosis of lung cancer.

METHODS

This paper presents differential geometry-based techniques for computation of spiculation, lobulation, and sphericity using the binary mask of the segmented nodule. These shape features are computed in 3D considering complete nodule.

RESULTS

The performance of the proposed and competing methods is evaluated in terms of the precision, mean similarity, and normalized discounted cumulative gain on 891 nodules of Lung Image Database Consortium and Image Database Resource Initiative. The proposed methods are comparable to or better than gold standard technique. The reproducibility of proposed feature extraction techniques is evaluated using RIDER coffee break data set. The mean and standard deviation of the percent change of spiculation, lobulation, and sphericity are [Formula: see text], [Formula: see text], and [Formula: see text] %, respectively.

CONCLUSION

The prior works of computation of spiculation, lobulation, and sphericity require a set of four ground truths from radiologists and, hence, can not be used in practice. The proposed methods do not require ground truth information of nodules from radiologists, and hence, it can be used in real-life computer-aided diagnosis system for lung cancer.

摘要

目的

肺结节的边界粗糙度是其恶性程度的重要指标。结节形状的不规则性通过毛刺征、分叶征和球形度等一些诊断特征来体现。对这些诊断特征进行定量表征对于设计基于内容的图像检索系统和肺癌诊断的计算机辅助系统至关重要。

方法

本文提出了基于微分几何的技术,用于使用分割结节的二值掩码计算毛刺征、分叶征和球形度。这些形状特征是在考虑完整结节的三维空间中计算的。

结果

在肺图像数据库联盟和图像数据库资源倡议的891个结节上,根据精度、平均相似度和归一化折损累计增益对所提出的方法和竞争方法的性能进行了评估。所提出的方法与金标准技术相当或更好。使用RIDER咖啡休息数据集评估了所提出的特征提取技术的可重复性。毛刺征、分叶征和球形度变化百分比的平均值和标准差分别为[公式:见原文]、[公式:见原文]和[公式:见原文]%。

结论

先前计算毛刺征、分叶征和球形度的工作需要放射科医生提供一组四个地面真值,因此无法在实际中使用。所提出的方法不需要放射科医生提供结节的地面真值信息,因此可用于实际的肺癌计算机辅助诊断系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验