Suppr超能文献

相似文献

1
Reproducible and Interpretable Spiculation Quantification for Lung Cancer Screening.
Comput Methods Programs Biomed. 2021 Mar;200:105839. doi: 10.1016/j.cmpb.2020.105839. Epub 2020 Nov 13.
2
CIRDataset: A large-scale Dataset for Clinically-Interpretable lung nodule Radiomics and malignancy prediction.
Med Image Comput Comput Assist Interv. 2022 Sep;2022:13-22. doi: 10.1007/978-3-031-16443-9_2. Epub 2022 Sep 16.
5
Evaluation of Prediction Models for Identifying Malignancy in Pulmonary Nodules Detected via Low-Dose Computed Tomography.
JAMA Netw Open. 2020 Feb 5;3(2):e1921221. doi: 10.1001/jamanetworkopen.2019.21221.
6
Data analysis of the Lung Imaging Database Consortium and Image Database Resource Initiative.
Acad Radiol. 2015 Apr;22(4):488-95. doi: 10.1016/j.acra.2014.12.004. Epub 2015 Jan 15.
7
Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer.
Med Phys. 2018 Apr;45(4):1537-1549. doi: 10.1002/mp.12820. Epub 2018 Mar 12.
8
WS-LungNet: A two-stage weakly-supervised lung cancer detection and diagnosis network.
Comput Biol Med. 2023 Mar;154:106587. doi: 10.1016/j.compbiomed.2023.106587. Epub 2023 Jan 24.
9
Differential geometry-based techniques for characterization of boundary roughness of pulmonary nodules in CT images.
Int J Comput Assist Radiol Surg. 2016 Mar;11(3):337-49. doi: 10.1007/s11548-015-1284-0. Epub 2015 Sep 4.
10
Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database.
Eur Radiol. 2016 Jul;26(7):2139-47. doi: 10.1007/s00330-015-4030-7. Epub 2015 Oct 6.

引用本文的文献

1
A Holistic Approach to Implementing Artificial Intelligence in Lung Cancer.
Indian J Surg Oncol. 2025 Feb;16(1):257-278. doi: 10.1007/s13193-024-02079-6. Epub 2024 Sep 5.
3
Preoperative F-FDG PET/CT and CT radiomics for identifying aggressive histopathological subtypes in early stage lung adenocarcinoma.
Comput Struct Biotechnol J. 2023 Nov 4;21:5601-5608. doi: 10.1016/j.csbj.2023.11.008. eCollection 2023.
5
Semantic characteristic grading of pulmonary nodules based on deep neural networks.
BMC Med Imaging. 2023 Oct 13;23(1):156. doi: 10.1186/s12880-023-01112-4.
7
CIRDataset: A large-scale Dataset for Clinically-Interpretable lung nodule Radiomics and malignancy prediction.
Med Image Comput Comput Assist Interv. 2022 Sep;2022:13-22. doi: 10.1007/978-3-031-16443-9_2. Epub 2022 Sep 16.

本文引用的文献

1
PSIGAN: Joint Probabilistic Segmentation and Image Distribution Matching for Unpaired Cross-Modality Adaptation-Based MRI Segmentation.
IEEE Trans Med Imaging. 2020 Dec;39(12):4071-4084. doi: 10.1109/TMI.2020.3011626. Epub 2020 Nov 30.
2
Multiple Resolution Residually Connected Feature Streams for Automatic Lung Tumor Segmentation From CT Images.
IEEE Trans Med Imaging. 2019 Jan;38(1):134-144. doi: 10.1109/TMI.2018.2857800. Epub 2018 Jul 23.
4
Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer.
Med Phys. 2018 Apr;45(4):1537-1549. doi: 10.1002/mp.12820. Epub 2018 Mar 12.
5
Radiomics and radiogenomics in lung cancer: A review for the clinician.
Lung Cancer. 2018 Jan;115:34-41. doi: 10.1016/j.lungcan.2017.10.015. Epub 2017 Nov 8.
6
Application of the 3D slicer chest imaging platform segmentation algorithm for large lung nodule delineation.
PLoS One. 2017 Jun 8;12(6):e0178944. doi: 10.1371/journal.pone.0178944. eCollection 2017.
7
LUNGx Challenge for computerized lung nodule classification.
J Med Imaging (Bellingham). 2016 Oct;3(4):044506. doi: 10.1117/1.JMI.3.4.044506. Epub 2016 Dec 19.
9
Radiological Image Traits Predictive of Cancer Status in Pulmonary Nodules.
Clin Cancer Res. 2017 Mar 15;23(6):1442-1449. doi: 10.1158/1078-0432.CCR-15-3102. Epub 2016 Sep 23.
10
Predicting Malignant Nodules from Screening CT Scans.
J Thorac Oncol. 2016 Dec;11(12):2120-2128. doi: 10.1016/j.jtho.2016.07.002. Epub 2016 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验