Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA; Department of Engineering and Computer Science, Virginia State University, 1 Hayden St, Petersburg, VA 23806, USA.
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA.
Comput Methods Programs Biomed. 2021 Mar;200:105839. doi: 10.1016/j.cmpb.2020.105839. Epub 2020 Nov 13.
Spiculations are important predictors of lung cancer malignancy, which are spikes on the surface of the pulmonary nodules. In this study, we proposed an interpretable and parameter-free technique to quantify the spiculation using area distortion metric obtained by the conformal (angle-preserving) spherical parameterization. We exploit the insight that for an angle-preserved spherical mapping of a given nodule, the corresponding negative area distortion precisely characterizes the spiculations on that nodule. We introduced novel spiculation scores based on the area distortion metric and spiculation measures. We also semi-automatically segment lung nodule (for reproducibility) as well as vessel and wall attachment to differentiate the real spiculations from lobulation and attachment. A simple pathological malignancy prediction model is also introduced. We used the publicly-available LIDC-IDRI dataset pathologists (strong-label) and radiologists (weak-label) ratings to train and test radiomics models containing this feature, and then externally validate the models. We achieved AUC = 0.80 and 0.76, respectively, with the models trained on the 811 weakly-labeled LIDC datasets and tested on the 72 strongly-labeled LIDC and 73 LUNGx datasets; the previous best model for LUNGx had AUC = 0.68. The number-of-spiculations feature was found to be highly correlated (Spearman's rank correlation coefficient ρ=0.44) with the radiologists' spiculation score. We developed a reproducible and interpretable, parameter-free technique for quantifying spiculations on nodules. The spiculation quantification measures was then applied to the radiomics framework for pathological malignancy prediction with reproducible semi-automatic segmentation of nodule. Using our interpretable features (size, attachment, spiculation, lobulation), we were able to achieve higher performance than previous models. In the future, we will exhaustively test our model for lung cancer screening in the clinic.
推测是肺癌恶性程度的重要预测指标,是肺结节表面的刺突。在这项研究中,我们提出了一种可解释的、无参数的技术,通过保角(保角)球参数化获得的面积变形度量来量化刺突。我们利用这样的洞察力,对于给定结节的保角球映射,对应的负面积变形恰好描述了该结节上的刺突。我们引入了基于面积变形度量和刺突度量的新的刺突评分。我们还半自动地分割肺结节(为了重现性)以及血管和壁附着,以区分真实的刺突和叶状和附着。还引入了一种简单的病理恶性预测模型。我们使用公共可用的 LIDC-IDRI 数据集病理学家(强标签)和放射科医生(弱标签)评分来训练和测试包含此特征的放射组学模型,然后对模型进行外部验证。我们在 811 个弱标记 LIDC 数据集上训练模型,并在 72 个强标记 LIDC 和 73 个 LUNGx 数据集上测试模型,分别获得 AUC=0.80 和 0.76;以前用于 LUNGx 的最佳模型 AUC=0.68。发现多刺特征与放射科医生的刺突评分高度相关(Spearman 秩相关系数ρ=0.44)。我们开发了一种可重现且可解释的、无参数的技术,用于量化结节上的刺突。然后将刺突量化测量应用于放射组学框架,用于病理恶性预测,并对结节进行可重现的半自动分割。使用我们可解释的特征(大小、附着、刺突、叶状),我们能够比以前的模型获得更高的性能。在未来,我们将在临床上对我们的模型进行广泛的肺癌筛查测试。