Suppr超能文献

用于计算机辅助肺癌诊断和可重复研究的基于云的肺部结节NoSQL开放数据库。

Cloud-Based NoSQL Open Database of Pulmonary Nodules for Computer-Aided Lung Cancer Diagnosis and Reproducible Research.

作者信息

Ferreira Junior José Raniery, Oliveira Marcelo Costa, de Azevedo-Marques Paulo Mazzoncini

机构信息

Lab of Telemedicine and Medical Informatics, University Hospital Prof. Alberto Antunes, Institute of Computing, Federal University of Alagoas, Av. Lourival Melo Mota, Cidade Universitária, 57072-900, Maceió, Alagoas, Brazil.

Center of Imaging Sciences and Medical Physics, Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Av. dos Bandeirantes, Monte Alegre, Ribeirão Preto, São Paulo, Brazil.

出版信息

J Digit Imaging. 2016 Dec;29(6):716-729. doi: 10.1007/s10278-016-9894-9.

Abstract

Lung cancer is the leading cause of cancer-related deaths in the world, and its main manifestation is pulmonary nodules. Detection and classification of pulmonary nodules are challenging tasks that must be done by qualified specialists, but image interpretation errors make those tasks difficult. In order to aid radiologists on those hard tasks, it is important to integrate the computer-based tools with the lesion detection, pathology diagnosis, and image interpretation processes. However, computer-aided diagnosis research faces the problem of not having enough shared medical reference data for the development, testing, and evaluation of computational methods for diagnosis. In order to minimize this problem, this paper presents a public nonrelational document-oriented cloud-based database of pulmonary nodules characterized by 3D texture attributes, identified by experienced radiologists and classified in nine different subjective characteristics by the same specialists. Our goal with the development of this database is to improve computer-aided lung cancer diagnosis and pulmonary nodule detection and classification research through the deployment of this database in a cloud Database as a Service framework. Pulmonary nodule data was provided by the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), image descriptors were acquired by a volumetric texture analysis, and database schema was developed using a document-oriented Not only Structured Query Language (NoSQL) approach. The proposed database is now with 379 exams, 838 nodules, and 8237 images, 4029 of them are CT scans and 4208 manually segmented nodules, and it is allocated in a MongoDB instance on a cloud infrastructure.

摘要

肺癌是全球癌症相关死亡的主要原因,其主要表现为肺结节。肺结节的检测和分类是具有挑战性的任务,必须由合格的专家来完成,但图像解读错误使这些任务变得困难。为了在这些艰巨任务上帮助放射科医生,将基于计算机的工具与病变检测、病理诊断和图像解读过程相结合非常重要。然而,计算机辅助诊断研究面临着缺乏足够的共享医学参考数据用于诊断计算方法的开发、测试和评估的问题。为了尽量减少这个问题,本文提出了一个基于云的面向非关系文档的肺结节公共数据库,该数据库以三维纹理属性为特征,由经验丰富的放射科医生识别,并由同一批专家按照九种不同的主观特征进行分类。我们开发这个数据库的目标是通过在云数据库即服务框架中部署该数据库,来改进计算机辅助肺癌诊断以及肺结节检测和分类研究。肺结节数据由肺部影像数据库联盟和影像数据库资源倡议组织(LIDC-IDRI)提供,图像描述符通过体积纹理分析获取,数据库模式使用面向文档的非结构化查询语言(NoSQL)方法开发。所提出的数据库目前包含379次检查、838个结节和8237张图像,其中4029张是CT扫描图像,4208个是手动分割的结节,并且它被分配到云基础设施上的一个MongoDB实例中。

相似文献

2
Improved lung nodule diagnosis accuracy using lung CT images with uncertain class.利用不确定类别的肺部 CT 图像提高肺结节诊断准确性。
Comput Methods Programs Biomed. 2018 Aug;162:197-209. doi: 10.1016/j.cmpb.2018.05.028. Epub 2018 May 18.
3
A Segmentation Framework of Pulmonary Nodules in Lung CT Images.肺部CT图像中肺结节的分割框架
J Digit Imaging. 2016 Feb;29(1):86-103. doi: 10.1007/s10278-015-9801-9.

引用本文的文献

2
The Effects of Perinodular Features on Solid Lung Nodule Classification.周围特征对实性肺结节分类的影响。
J Digit Imaging. 2021 Aug;34(4):798-810. doi: 10.1007/s10278-021-00453-2. Epub 2021 Mar 31.
7
Automatic weighing attribute to retrieve similar lung cancer nodules.用于检索相似肺癌结节的自动称重属性。
BMC Med Inform Decis Mak. 2016 Jul 21;16 Suppl 2(Suppl 2):79. doi: 10.1186/s12911-016-0313-4.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验