Suppr超能文献

烟曲霉磷酸蛋白质组揭示了高渗甘油有丝分裂原激活蛋白激酶在促进细胞壁损伤和卡泊芬净耐药性中的作用。

The Aspergillus fumigatus Phosphoproteome Reveals Roles of High-Osmolarity Glycerol Mitogen-Activated Protein Kinases in Promoting Cell Wall Damage and Caspofungin Tolerance.

机构信息

Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.

University of Maryland Baltimore County (UMBC), Department of Chemical, Biochemical and Environmental Engineering, Baltimore, Maryland, USA.

出版信息

mBio. 2020 Feb 4;11(1):e02962-19. doi: 10.1128/mBio.02962-19.

Abstract

The filamentous fungus can cause a distinct set of clinical disorders in humans. Invasive aspergillosis (IA) is the most common life-threatening fungal disease of immunocompromised humans. The mitogen-activated protein kinase (MAPK) signaling pathways are essential to the adaptation to the human host. Fungal cell survival is highly dependent on the organization, composition, and function of the cell wall. Here, an evaluation of the global phosphoproteome under cell wall stress caused by the cell wall-damaging agent Congo red (CR) revealed 485 proteins potentially involved in the cell wall damage response. Comparative phosphoproteome analyses with the Δ, Δ, and Δ Δ mutant strains from the osmotic stress MAPK cascades identify their additional roles during the cell wall stress response. Our phosphoproteomics allowed the identification of novel kinases and transcription factors (TFs) involved in osmotic stress and in the cell wall integrity (CWI) pathway. Our global phosphoproteome network analysis showed an enrichment for protein kinases, RNA recognition motif domains, and the MAPK signaling pathway. In contrast to the wild-type strain, there is an overall decrease of differentially phosphorylated kinases and phosphatases in Δ, Δ, and Δ Δ mutants. We constructed phosphomutants for the phosphorylation sites of several proteins differentially phosphorylated in the wild-type and mutant strains. For all the phosphomutants, there is an increase in the sensitivity to cell wall-damaging agents and a reduction in the MpkA phosphorylation upon CR stress, suggesting these phosphosites could be important for the MpkA modulation and CWI pathway regulation. is an opportunistic human pathogen causing allergic reactions or systemic infections, such as invasive pulmonary aspergillosis in immunocompromised patients. The mitogen-activated protein kinase (MAPK) signaling pathways are essential for fungal adaptation to the human host. Fungal cell survival, fungicide tolerance, and virulence are highly dependent on the organization, composition, and function of the cell wall. Upon cell wall stress, MAPKs phosphorylate multiple target proteins involved in the remodeling of the cell wall. Here, we investigate the global phosphoproteome of the Δ and Δ and high-osmolarity glycerol (HOG) pathway MAPK mutants upon cell wall damage. This showed the involvement of the HOG pathway and identified novel protein kinases and transcription factors, which were confirmed by fungal genetics to be involved in promoting tolerance of cell wall damage. Our results provide understanding of how fungal signal transduction networks modulate the cell wall. This may also lead to the discovery of new fungicide drug targets to impact fungal cell wall function, fungicide tolerance, and virulence.

摘要

丝状真菌可导致人类出现一系列独特的临床疾病。侵袭性曲霉病(IA)是免疫功能低下人群中最常见的危及生命的真菌病。丝裂原活化蛋白激酶(MAPK)信号通路对于适应人类宿主至关重要。真菌细胞的存活高度依赖于细胞壁的组织、组成和功能。在这里,通过细胞壁损伤剂刚果红(CR)引起的细胞壁应激评估了全局磷酸化蛋白质组,揭示了 485 种可能参与细胞壁损伤反应的蛋白质。通过与渗透胁迫 MAPK 级联的Δ、Δ和ΔΔ突变株进行比较磷酸化蛋白质组分析,确定了它们在细胞壁应激反应中的额外作用。我们的磷酸化蛋白质组学允许鉴定参与渗透胁迫和细胞壁完整性(CWI)途径的新型激酶和转录因子(TF)。我们的全局磷酸化蛋白质组网络分析显示,富含蛋白激酶、RNA 识别基序域和 MAPK 信号通路。与野生型菌株相比,Δ、Δ和ΔΔ突变体中差异磷酸化激酶和磷酸酶的整体水平下降。我们构建了几个在野生型和突变体菌株中差异磷酸化的蛋白质的磷酸突变体。对于所有的磷酸突变体,对细胞壁损伤剂的敏感性增加,并且在 CR 应激下 MpkA 的磷酸化减少,这表明这些磷酸化位点对于 MpkA 调节和 CWI 途径调节可能很重要。是一种机会性人类病原体,可引起过敏反应或全身感染,如免疫功能低下患者的侵袭性肺曲霉病。丝裂原活化蛋白激酶(MAPK)信号通路对于真菌适应人类宿主至关重要。真菌细胞的存活、杀真菌剂耐受性和毒力高度依赖于细胞壁的组织、组成和功能。在细胞壁受到压力时,MAPK 会磷酸化多个参与细胞壁重塑的靶蛋白。在这里,我们研究了细胞壁损伤后Δ和Δ和高渗透压甘油(HOG)途径 MAPK 突变体的全局磷酸蛋白质组。这表明 HOG 途径的参与并鉴定了新的蛋白激酶和转录因子,通过真菌遗传学证实它们参与促进细胞壁损伤的耐受性。我们的结果提供了对真菌信号转导网络如何调节细胞壁的理解。这也可能导致发现新的杀真菌药物靶点,以影响真菌细胞壁功能、杀真菌剂耐受性和毒力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8ea/7002344/038d09435ccd/mBio.02962-19-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验