Anal Chem. 2020 Jan 7;92(1):947-956. doi: 10.1021/acs.analchem.9b03827. Epub 2019 Dec 11.
The knowledge of ligand-protein interactions is essential for understanding fundamental biological processes and for the rational design of drugs that target such processes. Carbene footprinting efficiently labels proteinaceous residues and has been used with mass spectrometry (MS) to map ligand-protein interactions. Nevertheless, previous footprinting studies are typically performed at the residue level, and therefore, the resolution may not be high enough to couple with conventional crystallography techniques. Herein we developed a subresidue footprinting strategy based on the discovery that carbene labeling produces subresidue peptide isomers and the intensity changes of these isomers in response to ligand binding can be exploited to delineate ligand-protein topography at the subresidue level. The established workflow combines carbene footprinting, extended liquid chromatographic separation, and ion mobility (IM)-MS for efficient separation and identification of subresidue isomers. Analysis of representative subresidue isomers located within the binding cleft of lysozyme and those produced from an amyloid-β segment have both uncovered structural information heretofore unavailable by residue-level footprinting. Lastly, a "real-world" application shows that the reactivity changes of subresidue isomers at Phe399 can identify the interactive nuances between estrogen-related receptor α, a potential drug target for cancer and metabolic diseases, with its three ligands. These findings have significant implications for drug design. Taken together, we envision the subresidue-level resolution enabled by IM-MS-coupled carbene footprinting can bridge the gap between structural MS and the more-established biophysical tools and ultimately facilitate diverse applications for fundamental research and pharmaceutical development.
配体-蛋白质相互作用的知识对于理解基本的生物过程以及针对这些过程的药物的合理设计至关重要。卡宾足迹有效地标记蛋白质残基,并已与质谱 (MS) 一起用于绘制配体-蛋白质相互作用图。然而,以前的足迹研究通常在残基水平上进行,因此分辨率可能不够高,无法与传统的晶体学技术相结合。在此,我们开发了一种亚残基足迹策略,该策略基于以下发现:卡宾标记产生亚残基肽异构体,并且这些异构体的强度变化可以响应配体结合来描绘亚残基水平的配体-蛋白质形貌。所建立的工作流程结合了卡宾足迹、扩展的液相色谱分离和离子淌度 (IM)-MS,以有效分离和鉴定亚残基异构体。对位于溶菌酶结合裂隙内的代表性亚残基异构体以及从淀粉样β片段产生的亚残基异构体的分析都揭示了以前通过残基水平足迹无法获得的结构信息。最后,“真实世界”的应用表明,Phe399 亚残基异构体的反应性变化可以识别雌激素相关受体α(癌症和代谢疾病的潜在药物靶点)与其三种配体之间的相互作用细微差别。这些发现对药物设计具有重要意义。总的来说,我们设想通过 IM-MS 结合卡宾足迹实现的亚残基分辨率可以弥合结构 MS 与更成熟的生物物理工具之间的差距,并最终促进基础研究和药物开发的多样化应用。