Sergeeva Alena, Sergeev Roman, Lengert Ekaterina, Zakharevich Andrey, Parakhonskiy Bogdan, Gorin Dmitry, Sergeev Sergey, Volodkin Dmitry
Fraunhofer Institute for Cell Therapy and Immunology (IZI) , Am Muelenberg 13, 14467 Potsdam, Germany.
Saratov State University , Astrakhanskaya 83, 410012 Saratov, Russia.
ACS Appl Mater Interfaces. 2015 Sep 30;7(38):21315-25. doi: 10.1021/acsami.5b05848. Epub 2015 Sep 15.
Biocompatibility and high loading capacity of mesoporous CaCO3 vaterite crystals give an option to utilize the polycrystals for a wide range of (bio)applications. Formation and transformations of calcium carbonate polymorphs have been studied for decades, aimed at both basic and applied research interests. Here, composite multilayer-coated calcium carbonate polycrystals containing Fe3O4 magnetite nanoparticles and model protein lysozyme are fabricated. The structure of the composite polycrystals and vaterite → calcite recrystallization kinetics are studied. The recrystallization results in release of both loaded protein and Fe3O4 nanoparticles (magnetic manipulation is thus lost). Fe3O4 nanoparticles enhance the recrystallization that can be induced by reduction of the local pH with citric acid and reduction of the polycrystal crystallinity. Oppositely, the layer-by-layer assembled poly(allylamine hydrochloride)/poly(sodium styrenesulfonate) polyelectrolyte coating significantly inhibits the vaterite → calcite recrystallization (from hours to days) most likely due to suppression of the ion exchange giving an option to easily tune the release kinetics for a wide time scale, for example, for prolonged release. Moreover, the recrystallization of the coated crystals results in formulation of multilayer capsules keeping the feature of external manipulation. This study can help to design multifunctional microstructures with tailor-made characteristics for loading and controlled release as well as for external manipulation.
介孔球霰石型碳酸钙晶体的生物相容性和高负载能力为其在广泛的(生物)应用中使用提供了可能。几十年来,人们一直致力于研究碳酸钙多晶型物的形成与转变,这既出于基础研究兴趣,也有应用研究方面的考量。在此,制备了含有四氧化三铁磁性纳米颗粒和模型蛋白溶菌酶的复合多层包覆碳酸钙多晶体。对复合多晶体的结构以及球霰石→方解石的重结晶动力学进行了研究。重结晶导致负载的蛋白质和四氧化三铁纳米颗粒都释放出来(从而失去了磁操控性)。四氧化三铁纳米颗粒会加速重结晶,而柠檬酸降低局部pH值以及降低多晶体结晶度均可引发这种重结晶。相反,逐层组装的聚(烯丙胺盐酸盐)/聚(苯乙烯磺酸钠)聚电解质涂层显著抑制了球霰石→方解石的重结晶(从数小时延长至数天),这很可能是由于抑制了离子交换,从而能够在很宽的时间范围内轻松调节释放动力学,例如实现长效释放。此外,包覆晶体的重结晶会形成多层胶囊,保持外部操控的特性。这项研究有助于设计具有定制特性的多功能微结构,用于负载和控释以及外部操控。