Suppr超能文献

一种针对带重力的人体上肢的优化比例-微分控制器。

An optimized proportional-derivative controller for the human upper extremity with gravity.

作者信息

Jagodnik Kathleen M, Blana Dimitra, van den Bogert Antonie J, Kirsch Robert F

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; Fluid Physics and Transport Processes Branch, NASA Glenn Research Center, Cleveland, OH, United States; Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States.

Institute for Science and Technology in Medicine, Keele University, UK.

出版信息

J Biomech. 2015 Oct 15;48(13):3692-700. doi: 10.1016/j.jbiomech.2015.08.016. Epub 2015 Aug 29.

Abstract

When Functional Electrical Stimulation (FES) is used to restore movement in subjects with spinal cord injury (SCI), muscle stimulation patterns should be selected to generate accurate and efficient movements. Ideally, the controller for such a neuroprosthesis will have the simplest architecture possible, to facilitate translation into a clinical setting. In this study, we used the simulated annealing algorithm to optimize two proportional-derivative (PD) feedback controller gain sets for a 3-dimensional arm model that includes musculoskeletal dynamics and has 5 degrees of freedom and 22 muscles, performing goal-oriented reaching movements. Controller gains were optimized by minimizing a weighted sum of position errors, orientation errors, and muscle activations. After optimization, gain performance was evaluated on the basis of accuracy and efficiency of reaching movements, along with three other benchmark gain sets not optimized for our system, on a large set of dynamic reaching movements for which the controllers had not been optimized, to test ability to generalize. Robustness in the presence of weakened muscles was also tested. The two optimized gain sets were found to have very similar performance to each other on all metrics, and to exhibit significantly better accuracy, compared with the three standard gain sets. All gain sets investigated used physiologically acceptable amounts of muscular activation. It was concluded that optimization can yield significant improvements in controller performance while still maintaining muscular efficiency, and that optimization should be considered as a strategy for future neuroprosthesis controller design.

摘要

当使用功能性电刺激(FES)来恢复脊髓损伤(SCI)患者的运动时,应选择肌肉刺激模式以产生准确且高效的运动。理想情况下,这种神经假体的控制器应具有尽可能简单的架构,以便于转化为临床应用。在本研究中,我们使用模拟退火算法为一个三维手臂模型优化了两组比例 - 微分(PD)反馈控制器增益,该模型包含肌肉骨骼动力学,具有5个自由度和22块肌肉,可执行目标导向的伸手动作。通过最小化位置误差、方向误差和肌肉激活的加权和来优化控制器增益。优化后,基于伸手动作的准确性和效率,以及其他三组未针对我们的系统进行优化的基准增益,在一大组控制器未针对其进行优化的动态伸手动作上评估增益性能,以测试其泛化能力。还测试了在肌肉力量减弱情况下的鲁棒性。结果发现,这两组优化后的增益在所有指标上彼此表现非常相似,并且与三组标准增益相比,具有显著更高的准确性。所有研究的增益组都使用了生理上可接受的肌肉激活量。得出的结论是,优化可以在保持肌肉效率的同时显著提高控制器性能,并且优化应被视为未来神经假体控制器设计的一种策略。

相似文献

1
An optimized proportional-derivative controller for the human upper extremity with gravity.
J Biomech. 2015 Oct 15;48(13):3692-700. doi: 10.1016/j.jbiomech.2015.08.016. Epub 2015 Aug 29.
2
Optimization and evaluation of a proportional derivative controller for planar arm movement.
J Biomech. 2010 Apr 19;43(6):1086-91. doi: 10.1016/j.jbiomech.2009.12.017. Epub 2010 Jan 25.
3
Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.
Med Biol Eng Comput. 2009 May;47(5):533-42. doi: 10.1007/s11517-009-0479-3. Epub 2009 Apr 3.
4
Feedback control of functional electrical stimulation for arbitrary upper extremity movements.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1451-1456. doi: 10.1109/ICORR.2017.8009452.
5
6
Deep Reinforcement Learning for Control of Time-Varying Musculoskeletal Systems With High Fatigability: A Feasibility Study.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:2613-2622. doi: 10.1109/TNSRE.2022.3203970. Epub 2022 Sep 19.
7
Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):80-90. doi: 10.1109/TNSRE.2008.2010480.
8
Control of a time-delayed 5 degrees of freedom arm model for use in upper extremity functional electrical stimulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:322-4. doi: 10.1109/EMBC.2012.6345934.
9
Feedback Control of Functional Electrical Stimulation for 2-D Arm Reaching Movements.
IEEE Trans Neural Syst Rehabil Eng. 2018 Oct;26(10):2033-2043. doi: 10.1109/TNSRE.2018.2853573. Epub 2018 Jul 5.
10
Adaptive neural network control of cyclic movements using functional neuromuscular stimulation.
IEEE Trans Rehabil Eng. 2000 Mar;8(1):42-52. doi: 10.1109/86.830948.

引用本文的文献

2
Neuromechanics-Based Neural Feedback Controller for Planar Arm Reaching Movements.
Bioengineering (Basel). 2023 Mar 30;10(4):436. doi: 10.3390/bioengineering10040436.
3
Improving the Learning Rate, Accuracy, and Workspace of Reinforcement Learning Controllers for a Musculoskeletal Model of the Human Arm.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:30-39. doi: 10.1109/TNSRE.2021.3135471. Epub 2022 Jan 28.

本文引用的文献

1
Does the nervous system use equilibrium-point control to guide single and multiple joint movements?
Behav Brain Sci. 1992 Dec;15(4):603-13. doi: 10.1017/S0140525X00072538.
2
Standard task set for evaluating rehabilitation interventions for individuals with arm paralysis.
J Rehabil Res Dev. 2012;49(3):395-403. doi: 10.1682/jrrd.2011.03.0040.
3
Optimization and evaluation of a proportional derivative controller for planar arm movement.
J Biomech. 2010 Apr 19;43(6):1086-91. doi: 10.1016/j.jbiomech.2009.12.017. Epub 2010 Jan 25.
4
An improved auto-tuning scheme for PID controllers.
ISA Trans. 2009 Oct;48(4):396-409. doi: 10.1016/j.isatra.2009.07.002. Epub 2009 Aug 3.
5
Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.
Med Biol Eng Comput. 2009 May;47(5):533-42. doi: 10.1007/s11517-009-0479-3. Epub 2009 Apr 3.
6
A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements.
IEEE Trans Biomed Eng. 2009 Apr;56(4):941-8. doi: 10.1109/TBME.2008.2005946. Epub 2008 Sep 26.
7
Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):80-90. doi: 10.1109/TNSRE.2008.2010480.
8
Optimization by simulated annealing.
Science. 1983 May 13;220(4598):671-80. doi: 10.1126/science.220.4598.671.
9
Functional electrical stimulation for neuromuscular applications.
Annu Rev Biomed Eng. 2005;7:327-60. doi: 10.1146/annurev.bioeng.6.040803.140103.
10
Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller.
IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):147-52. doi: 10.1109/TNSRE.2005.847375.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验