Suppr超能文献

用于上肢神经假体的基于肌电图的神经网络控制器的可行性。

Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis.

作者信息

Hincapie Juan Gabriel, Kirsch Robert F

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 USA.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):80-90. doi: 10.1109/TNSRE.2008.2010480.

Abstract

The overarching goal of this project is to provide shoulder and elbow function to individuals with C5/C6 spinal cord injury (SCI) using functional electrical stimulation (FES), increasing the functional outcomes currently provided by a hand neuroprosthesis. The specific goal of this study was to design a controller based on an artificial neural network (ANN) that extracts information from the activity of muscles that remain under voluntary control sufficient to predict appropriate stimulation levels for several paralyzed muscles in the upper extremity. The ANN was trained with activation data obtained from simulations using a musculoskeletal model of the arm that was modified to reflect C5 SCI and FES capabilities. Several arm movements were recorded from able-bodied subjects and these kinematics served as the inputs to inverse dynamic simulations that predicted muscle activation patterns corresponding to the movements recorded. A system identification procedure was used to identify an optimal reduced set of voluntary input muscles from the larger set that are typically under voluntary control in C5 SCI. These voluntary activations were used as the inputs to the ANN and muscles that are typically paralyzed in C5 SCI were the outputs to be predicted. The neural network controller was able to predict the needed FES paralyzed muscle activations from "voluntary" activations with less than a 3.6% RMS prediction error.

摘要

本项目的总体目标是利用功能性电刺激(FES)为C5/C6脊髓损伤(SCI)患者提供肩肘功能,提高目前手部神经假体所提供的功能结果。本研究的具体目标是设计一种基于人工神经网络(ANN)的控制器,该控制器从仍受自主控制的肌肉活动中提取信息,以预测上肢几块瘫痪肌肉的适当刺激水平。使用经过修改以反映C5 SCI和FES能力的手臂肌肉骨骼模型,通过模拟获得的激活数据对人工神经网络进行训练。记录了健全受试者的几种手臂运动,这些运动学数据作为逆动力学模拟的输入,该模拟预测了与记录的运动相对应的肌肉激活模式。使用系统识别程序从C5 SCI中通常受自主控制的较大肌肉组中识别出一组最佳的减少后的自主输入肌肉。这些自主激活用作人工神经网络的输入,而C5 SCI中通常瘫痪的肌肉则是要预测的输出。神经网络控制器能够从“自主”激活中预测所需的FES瘫痪肌肉激活,均方根预测误差小于3.6%。

相似文献

1
Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):80-90. doi: 10.1109/TNSRE.2008.2010480.
2
EMG-based control for a C5/C6 spinal cord injury upper extremity neuroprosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:2432-5. doi: 10.1109/IEMBS.2007.4352819.
3
Adaptive neural network controller for an upper extremity neuroprosthesis.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:4133-6. doi: 10.1109/IEMBS.2004.1404153.
4
Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller.
IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):147-52. doi: 10.1109/TNSRE.2005.847375.
5
Musculoskeletal model-guided, customizable selection of shoulder and elbow muscles for a C5 SCI neuroprosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2008 Jun;16(3):255-63. doi: 10.1109/TNSRE.2008.922681.
6
Utilizing remaining voluntary muscle synergies to control FES elbow extension after spinal cord injury.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:4118-21. doi: 10.1109/IEMBS.2004.1404149.
7
A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems.
J Biomech. 2008;41(8):1714-21. doi: 10.1016/j.jbiomech.2008.03.001. Epub 2008 Apr 16.
8
Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.
Med Biol Eng Comput. 2009 May;47(5):533-42. doi: 10.1007/s11517-009-0479-3. Epub 2009 Apr 3.
9
10
An optimized proportional-derivative controller for the human upper extremity with gravity.
J Biomech. 2015 Oct 15;48(13):3692-700. doi: 10.1016/j.jbiomech.2015.08.016. Epub 2015 Aug 29.

引用本文的文献

1
A Systematic Review of Artificial Intelligence Applications in Plastic Surgery: Looking to the Future.
Plast Reconstr Surg Glob Open. 2022 Dec 2;10(12):e4608. doi: 10.1097/GOX.0000000000004608. eCollection 2022 Dec.
2
Classifying muscle parameters with artificial neural networks and simulated lateral pinch data.
PLoS One. 2021 Sep 2;16(9):e0255103. doi: 10.1371/journal.pone.0255103. eCollection 2021.
4
EMG-Based Continuous and Simultaneous Estimation of Arm Kinematics in Able-Bodied Individuals and Stroke Survivors.
Front Neurosci. 2017 Aug 25;11:480. doi: 10.3389/fnins.2017.00480. eCollection 2017.
5
An optimized proportional-derivative controller for the human upper extremity with gravity.
J Biomech. 2015 Oct 15;48(13):3692-700. doi: 10.1016/j.jbiomech.2015.08.016. Epub 2015 Aug 29.
6
Prediction of muscle activity during loaded movements of the upper limb.
J Neuroeng Rehabil. 2015 Jan 15;12(1):6. doi: 10.1186/1743-0003-12-6.
7
Multi-muscle FES force control of the human arm for arbitrary goals.
IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):654-63. doi: 10.1109/TNSRE.2013.2282903. Epub 2013 Oct 7.
8
Clinical applications of musculoskeletal modelling for the shoulder and upper limb.
Med Biol Eng Comput. 2013 Sep;51(9):953-63. doi: 10.1007/s11517-013-1099-5. Epub 2013 Jul 20.
9
A neuro-fuzzy system for characterization of arm movements.
Sensors (Basel). 2013 Feb 21;13(2):2613-30. doi: 10.3390/s130202613.
10
A novel myoelectric pattern recognition strategy for hand function restoration after incomplete cervical spinal cord injury.
IEEE Trans Neural Syst Rehabil Eng. 2013 Jan;21(1):96-103. doi: 10.1109/TNSRE.2012.2218832. Epub 2012 Sep 27.

本文引用的文献

1
A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements.
IEEE Trans Biomed Eng. 2009 Apr;56(4):941-8. doi: 10.1109/TBME.2008.2005946. Epub 2008 Sep 26.
2
Musculoskeletal model-guided, customizable selection of shoulder and elbow muscles for a C5 SCI neuroprosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2008 Jun;16(3):255-63. doi: 10.1109/TNSRE.2008.922681.
3
An exoskeletal robot for human elbow motion support-sensor fusion, adaptation, and control.
IEEE Trans Syst Man Cybern B Cybern. 2001;31(3):353-61. doi: 10.1109/3477.931520.
4
Targeted reinnervation for improved prosthetic function.
Phys Med Rehabil Clin N Am. 2006 Feb;17(1):1-13. doi: 10.1016/j.pmr.2005.10.001.
5
The relationship between two different mechanical cost functions and muscle oxygen consumption.
J Biomech. 2006;39(4):758-65. doi: 10.1016/j.jbiomech.2004.11.034.
6
A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses.
IEEE Trans Biomed Eng. 2005 Nov;52(11):1801-11. doi: 10.1109/TBME.2005.856295.
7
A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control.
IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):280-91. doi: 10.1109/TNSRE.2005.847357.
8
Refined myoelectric control in below-elbow amputees using artificial neural networks and a data glove.
J Hand Surg Am. 2005 Jul;30(4):780-9. doi: 10.1016/j.jhsa.2005.01.002.
9
Novel muscle patterns for reaching after cervical spinal cord injury: a case for motor redundancy.
Exp Brain Res. 2005 Jul;164(2):133-47. doi: 10.1007/s00221-005-2218-9. Epub 2005 Mar 15.
10
Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller.
IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):147-52. doi: 10.1109/TNSRE.2005.847375.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验