Suppr超能文献

多网络指数随机图模型中基线平均度的灵活参数化

A FLEXIBLE PARAMETERIZATION FOR BASELINE MEAN DEGREE IN MULTIPLE-NETWORK ERGMS.

作者信息

Butts Carter T, Almquist Zack W

机构信息

Departments of Sociology, Statistics, and EECS, and Institute for Mathematical Behavioral Sciences, University of California, Irvine, California, USA.

Department of Sociology, School of Statistics, and Minnesota Population Center, University of Minnesota, Minneapolis, Minnesota, USA.

出版信息

J Math Sociol. 2015;39(3):163-167. doi: 10.1080/0022250X.2014.967851.

Abstract

The conventional exponential family random graph model (ERGM) parameterization leads to a baseline density that is constant in graph order (i.e., number of nodes); this is potentially problematic when modeling multiple networks of varying order. Prior work has suggested a simple alternative that results in constant expected mean degree. Here, we extend this approach by suggesting another alternative parameterization that allows for flexible modeling of scenarios in which baseline expected degree scales as an arbitrary power of order. This parameterization is easily implemented by the inclusion of an edge count/log order statistic along with the traditional edge count statistic in the model specification.

摘要

传统的指数族随机图模型(ERGM)参数化会产生一个在图的阶数(即节点数)上恒定的基线密度;在对不同阶数的多个网络进行建模时,这可能会带来问题。先前的工作提出了一种简单的替代方法,该方法能产生恒定的预期平均度。在此,我们扩展了这种方法,提出了另一种替代参数化方法,它允许灵活地对基线预期度按阶数的任意幂次缩放的情况进行建模。通过在模型规范中纳入边计数/对数阶数统计量以及传统的边计数统计量,这种参数化很容易实现。

相似文献

1
A FLEXIBLE PARAMETERIZATION FOR BASELINE MEAN DEGREE IN MULTIPLE-NETWORK ERGMS.
J Math Sociol. 2015;39(3):163-167. doi: 10.1080/0022250X.2014.967851.
2
Practical Network Modeling via Tapered Exponential-family Random Graph Models.
J Comput Graph Stat. 2023;32(2):388-401. doi: 10.1080/10618600.2022.2116444. Epub 2022 Oct 11.
3
A survey on exponential random graph models: an application perspective.
PeerJ Comput Sci. 2020 Apr 6;6:e269. doi: 10.7717/peerj-cs.269. eCollection 2020.
4
Improving Simulation-Based Algorithms for Fitting ERGMs.
J Comput Graph Stat. 2012 Dec 13;21(4):920-939. doi: 10.1080/10618600.2012.679224.
5
Network Clustering Analysis Using Mixture Exponential-Family Random Graph Models and Its Application in Genetic Interaction Data.
IEEE/ACM Trans Comput Biol Bioinform. 2019 Sep-Oct;16(5):1743-1752. doi: 10.1109/TCBB.2017.2743711. Epub 2017 Aug 24.
6
Exponential-family random graph models for valued networks.
Electron J Stat. 2012;6:1100-1128. doi: 10.1214/12-EJS696.
7
Comparing the Real-World Performance of Exponential-family Random Graph Models and Latent Order Logistic Models for Social Network Analysis.
J R Stat Soc Ser A Stat Soc. 2022 Apr;185(2):566-587. doi: 10.1111/rssa.12788. Epub 2022 Jan 28.
9
Adjusting for Network Size and Composition Effects in Exponential-Family Random Graph Models.
Stat Methodol. 2011 Jul;8(4):319-339. doi: 10.1016/j.stamet.2011.01.005.
10
Exponential random graph model parameter estimation for very large directed networks.
PLoS One. 2020 Jan 24;15(1):e0227804. doi: 10.1371/journal.pone.0227804. eCollection 2020.

引用本文的文献

1
DYNAMIC NETWORK ANALYSIS WITH MISSING DATA: THEORY AND METHODS.
Stat Sin. 2018 Jul;28(3):1245-1264. doi: 10.5705/ss.202016.0108.
2
Continuous Time Graph Processes with Known ERGM Equilibria: Contextual Review, Extensions, and Synthesis.
J Math Sociol. 2024;48(2):129-171. doi: 10.1080/0022250x.2023.2180001. Epub 2023 Feb 27.
3
Multilevel network data facilitate statistical inference for curved ERGMs with geometrically weighted terms.
Netw Sci (Camb Univ Press). 2019 Oct;59:98-119. doi: 10.1016/j.socnet.2018.11.003. Epub 2019 Jun 28.

本文引用的文献

1
LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS.
Sociol Methodol. 2014 Aug 1;44(1):273-321. doi: 10.1177/0081175013520159.
2
Adjusting for Network Size and Composition Effects in Exponential-Family Random Graph Models.
Stat Methodol. 2011 Jul;8(4):319-339. doi: 10.1016/j.stamet.2011.01.005.
3
ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks.
J Stat Softw. 2008 May 1;24(3):nihpa54860. doi: 10.18637/jss.v024.i03.
5
Advances in Exponential Random Graph (p*) Models Applied to a Large Social Network.
Soc Networks. 2007 May;29(2):231-248. doi: 10.1016/j.socnet.2006.08.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验