Suppr超能文献

多网络指数随机图模型中基线平均度的灵活参数化

A FLEXIBLE PARAMETERIZATION FOR BASELINE MEAN DEGREE IN MULTIPLE-NETWORK ERGMS.

作者信息

Butts Carter T, Almquist Zack W

机构信息

Departments of Sociology, Statistics, and EECS, and Institute for Mathematical Behavioral Sciences, University of California, Irvine, California, USA.

Department of Sociology, School of Statistics, and Minnesota Population Center, University of Minnesota, Minneapolis, Minnesota, USA.

出版信息

J Math Sociol. 2015;39(3):163-167. doi: 10.1080/0022250X.2014.967851.

Abstract

The conventional exponential family random graph model (ERGM) parameterization leads to a baseline density that is constant in graph order (i.e., number of nodes); this is potentially problematic when modeling multiple networks of varying order. Prior work has suggested a simple alternative that results in constant expected mean degree. Here, we extend this approach by suggesting another alternative parameterization that allows for flexible modeling of scenarios in which baseline expected degree scales as an arbitrary power of order. This parameterization is easily implemented by the inclusion of an edge count/log order statistic along with the traditional edge count statistic in the model specification.

摘要

传统的指数族随机图模型(ERGM)参数化会产生一个在图的阶数(即节点数)上恒定的基线密度;在对不同阶数的多个网络进行建模时,这可能会带来问题。先前的工作提出了一种简单的替代方法,该方法能产生恒定的预期平均度。在此,我们扩展了这种方法,提出了另一种替代参数化方法,它允许灵活地对基线预期度按阶数的任意幂次缩放的情况进行建模。通过在模型规范中纳入边计数/对数阶数统计量以及传统的边计数统计量,这种参数化很容易实现。

相似文献

2
Practical Network Modeling via Tapered Exponential-family Random Graph Models.通过渐缩指数族随机图模型进行实用网络建模
J Comput Graph Stat. 2023;32(2):388-401. doi: 10.1080/10618600.2022.2116444. Epub 2022 Oct 11.
3
A survey on exponential random graph models: an application perspective.指数随机图模型综述:应用视角
PeerJ Comput Sci. 2020 Apr 6;6:e269. doi: 10.7717/peerj-cs.269. eCollection 2020.
4
Improving Simulation-Based Algorithms for Fitting ERGMs.改进用于拟合指数随机图模型的基于模拟的算法。
J Comput Graph Stat. 2012 Dec 13;21(4):920-939. doi: 10.1080/10618600.2012.679224.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验