Bro Rasmus, Kamstrup-Nielsen Maja H, Engelsen Søren Balling, Savorani Francesco, Rasmussen Morten A, Hansen Louise, Olsen Anja, Tjønneland Anne, Dragsted Lars Ove
Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark.
Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.
Metabolomics. 2015;11(5):1376-1380. doi: 10.1007/s11306-015-0793-8. Epub 2015 Mar 10.
Breast cancer is a major cause of death for women. To improve treatment, current oncology research focuses on discovering and validating new biomarkers for early detection of cancer; so far with limited success. Metabolic profiling of plasma samples and auxiliary lifestyle information was combined by chemometric data fusion. It was possible to create a , which we define as a complex pattern of relevant biological and phenotypic information. While single markers or known risk factors have close to no predictive value, the developed biocontour provides a which, is on par with how well most current biomarkers can diagnose cancer. Hence, while e.g. mammography can diagnose current cancer with a sensitivity and specificity of around 75 %, the currently developed biocontour can predict that there is an increased risk that breast cancer will develop in a subject 2-5 years after the sample is taken with sensitivity and specificity well above 80 %. The model was built on data obtained in 1993-1996 and tested on persons sampled a year later in 1997. Metabolic forecasting of cancer by biocontours opens new possibilities for early prediction of individual cancer risk and thus for efficient screening. This may provide new avenues for research into disease mechanisms.
乳腺癌是女性死亡的主要原因。为了改善治疗效果,当前肿瘤学研究聚焦于发现和验证用于癌症早期检测的新生物标志物;但迄今为止成效有限。通过化学计量学数据融合,将血浆样本的代谢谱分析与辅助生活方式信息相结合。有可能创建一种生物轮廓,我们将其定义为相关生物学和表型信息的复杂模式。虽然单一标志物或已知风险因素几乎没有预测价值,但所开发的生物轮廓提供了一种预测能力,与目前大多数生物标志物诊断癌症的能力相当。因此,例如乳房X光检查可以以约75%的灵敏度和特异性诊断当前的癌症,而目前开发的生物轮廓能够预测在采集样本2至5年后,受试者患乳腺癌的风险增加,其灵敏度和特异性远高于80%。该模型基于1993年至1996年获得的数据构建,并在一年后的1997年对采样人员进行了测试。通过生物轮廓对癌症进行代谢预测为早期预测个体癌症风险以及高效筛查开辟了新的可能性。这可能为疾病机制的研究提供新途径。