Suppr超能文献

用于改善骨软骨再生的新型3D打印生物活性纳米复合支架的设计

Design of a Novel 3D Printed Bioactive Nanocomposite Scaffold for Improved Osteochondral Regeneration.

作者信息

Castro Nathan J, Patel Romil, Zhang Lijie Grace

机构信息

Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22 street, NW, Washington, DC, 20052.

Department of Biomedical Engineering, The George Washington University, 800 22 street, NW, Washington, DC, 20052.

出版信息

Cell Mol Bioeng. 2015 Sep;8(3):416-432. doi: 10.1007/s12195-015-0389-4.

Abstract

Chronic and acute osteochondral defects as a result of osteoarthritis and trauma present a common and serious clinical problem due to the tissue's inherent complexity and poor regenerative capacity. In addition, cells within the osteochondral tissue are in intimate contact with a 3D nanostructured extracellular matrix composed of numerous bioactive organic and inorganic components. As an emerging manufacturing technique, 3D printing offers great precision and control over the microarchitecture, shape and composition of tissue scaffolds. Therefore, the objective of this study is to develop a biomimetic 3D printed nanocomposite scaffold with integrated differentiation cues for improved osteochondral tissue regeneration. Through the combination of novel nano-inks composed of organic and inorganic bioactive factors and advanced 3D printing, we have successfully fabricated a series of novel constructs which closely mimic the native 3D extracellular environment with hierarchical nanoroughness, microstructure and spatiotemporal bioactive cues. Our results illustrate several key characteristics of the 3D printed nanocomposite scaffold to include improved mechanical properties as well as excellent cytocompatibility for enhanced human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation The present work further illustrates the effectiveness of the scaffolds developed here as a promising and highly tunable platform for osteochondral tissue regeneration.

摘要

由于骨软骨组织固有的复杂性和较差的再生能力,骨关节炎和创伤导致的慢性和急性骨软骨缺损是一个常见且严重的临床问题。此外,骨软骨组织内的细胞与由众多生物活性有机和无机成分组成的三维纳米结构细胞外基质紧密接触。作为一种新兴的制造技术,3D打印在组织支架的微观结构、形状和组成方面具有很高的精度和可控性。因此,本研究的目的是开发一种具有整合分化线索的仿生3D打印纳米复合支架,以促进骨软骨组织再生。通过将由有机和无机生物活性因子组成的新型纳米墨水与先进的3D打印相结合,我们成功制备了一系列新型构建体,这些构建体紧密模拟了具有分级纳米粗糙度、微观结构和时空生物活性线索的天然三维细胞外环境。我们的结果阐明了3D打印纳米复合支架的几个关键特性,包括改善的机械性能以及对增强人骨髓间充质干细胞粘附、增殖和骨软骨分化的优异细胞相容性。目前的工作进一步说明了此处开发的支架作为骨软骨组织再生的一个有前景且高度可调的平台的有效性。

相似文献

1
Design of a Novel 3D Printed Bioactive Nanocomposite Scaffold for Improved Osteochondral Regeneration.
Cell Mol Bioeng. 2015 Sep;8(3):416-432. doi: 10.1007/s12195-015-0389-4.
3
3D Printed scaffolds with hierarchical biomimetic structure for osteochondral regeneration.
Nanomedicine. 2019 Jul;19:58-70. doi: 10.1016/j.nano.2019.04.002. Epub 2019 Apr 18.
4
Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
ACS Appl Mater Interfaces. 2020 Jan 29;12(4):4343-4357. doi: 10.1021/acsami.9b22062. Epub 2020 Jan 17.
5
Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
Acta Biomater. 2016 Dec;46:256-265. doi: 10.1016/j.actbio.2016.09.030. Epub 2016 Sep 22.
6
3D printed-electrospun PCL/hydroxyapatite/MWCNTs scaffolds for the repair of subchondral bone.
Regen Biomater. 2022 Dec 14;10:rbac104. doi: 10.1093/rb/rbac104. eCollection 2023.
7
3D-printed mesoporous bioactive glass/GelMA biomimetic scaffolds for osteogenic/cementogenic differentiation of periodontal ligament cells.
Front Bioeng Biotechnol. 2022 Oct 18;10:950970. doi: 10.3389/fbioe.2022.950970. eCollection 2022.
9
Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration.
Acta Biomater. 2017 Nov;63:210-226. doi: 10.1016/j.actbio.2017.09.008. Epub 2017 Sep 9.
10
A new bi-layered scaffold for osteochondral tissue regeneration: In vitro and in vivo preclinical investigations.
Mater Sci Eng C Mater Biol Appl. 2017 Jan 1;70(Pt 1):101-111. doi: 10.1016/j.msec.2016.08.027. Epub 2016 Aug 12.

引用本文的文献

1
The current status of nano-hydrogel preparations for osteochondral repair: Systematic Review.
Front Bioeng Biotechnol. 2025 Jul 1;13:1611522. doi: 10.3389/fbioe.2025.1611522. eCollection 2025.
2
Investigations into the effects of scaffold microstructure on slow-release system with bioactive factors for bone repair.
Front Bioeng Biotechnol. 2023 Sep 14;11:1230682. doi: 10.3389/fbioe.2023.1230682. eCollection 2023.
3
Marine-Inspired Approaches as a Smart Tool to Face Osteochondral Regeneration.
Mar Drugs. 2023 Mar 28;21(4):212. doi: 10.3390/md21040212.
7
3D Printed Multiphasic Scaffolds for Osteochondral Repair: Challenges and Opportunities.
Int J Mol Sci. 2021 Nov 17;22(22):12420. doi: 10.3390/ijms222212420.
8
Applications of nanotechnology in 3D printed tissue engineering scaffolds.
Eur J Pharm Biopharm. 2021 Apr;161:15-28. doi: 10.1016/j.ejpb.2021.01.018. Epub 2021 Feb 5.
9
Bioprinting of osteochondral tissues: A perspective on current gaps and future trends.
Int J Bioprint. 2017 Jul 7;3(2):007. doi: 10.18063/IJB.2017.02.007. eCollection 2017.
10
Tripolyphosphate-Crosslinked Chitosan/Gelatin Biocomposite Ink for 3D Printing of Uniaxial Scaffolds.
Front Bioeng Biotechnol. 2020 Apr 30;8:400. doi: 10.3389/fbioe.2020.00400. eCollection 2020.

本文引用的文献

1
Self-assemblied nanocomplexes based on biomimetic amphiphilic chitosan derivatives for protein delivery.
Carbohydr Polym. 2015 May 5;121:115-21. doi: 10.1016/j.carbpol.2014.12.049. Epub 2015 Jan 2.
2
Cell-mediated BMP-2 release from a novel dual-drug delivery system promotes bone formation.
Clin Oral Implants Res. 2014 Dec;25(12):1412-21. doi: 10.1111/clr.12283.
3
Engineering a biomimetic three-dimensional nanostructured bone model for breast cancer bone metastasis study.
Acta Biomater. 2015 Mar;14:164-74. doi: 10.1016/j.actbio.2014.12.008. Epub 2014 Dec 17.
5
Development of novel three-dimensional printed scaffolds for osteochondral regeneration.
Tissue Eng Part A. 2015 Jan;21(1-2):403-15. doi: 10.1089/ten.TEA.2014.0138. Epub 2014 Sep 12.
6
Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration.
Tissue Eng Part B Rev. 2015 Feb;21(1):103-14. doi: 10.1089/ten.TEB.2014.0168. Epub 2014 Sep 16.
8
Reconstruction of focal cartilage defects in the talus with miniarthrotomy and collagen matrix.
Oper Orthop Traumatol. 2014 Dec;26(6):603-10. doi: 10.1007/s00064-012-0229-9. Epub 2014 Jun 6.
9
TGF-β prevents phosphate-induced osteogenesis through inhibition of BMP and Wnt/β-catenin pathways.
PLoS One. 2014 Feb 27;9(2):e89179. doi: 10.1371/journal.pone.0089179. eCollection 2014.
10
Inkjet printing of layer-by-layer assembled poly(lactide) stereocomplex with encapsulated proteins.
Langmuir. 2014 Feb 18;30(6):1669-76. doi: 10.1021/la404162h. Epub 2014 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验