Suppr超能文献

宿主反应生物标志物预测坦桑尼亚临床肺炎儿童的主要终点放射性肺炎:一项前瞻性队列研究。

Biomarkers of Host Response Predict Primary End-Point Radiological Pneumonia in Tanzanian Children with Clinical Pneumonia: A Prospective Cohort Study.

作者信息

Erdman Laura K, D'Acremont Valérie, Hayford Kyla, Rajwans Nimerta, Kilowoko Mary, Kyungu Esther, Hongoa Philipina, Alamo Leonor, Streiner David L, Genton Blaise, Kain Kevin C

机构信息

Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.

Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland; Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland.

出版信息

PLoS One. 2015 Sep 14;10(9):e0137592. doi: 10.1371/journal.pone.0137592. eCollection 2015.

Abstract

BACKGROUND

Diagnosing pediatric pneumonia is challenging in low-resource settings. The World Health Organization (WHO) has defined primary end-point radiological pneumonia for use in epidemiological and vaccine studies. However, radiography requires expertise and is often inaccessible. We hypothesized that plasma biomarkers of inflammation and endothelial activation may be useful surrogates for end-point pneumonia, and may provide insight into its biological significance.

METHODS

We studied children with WHO-defined clinical pneumonia (n = 155) within a prospective cohort of 1,005 consecutive febrile children presenting to Tanzanian outpatient clinics. Based on x-ray findings, participants were categorized as primary end-point pneumonia (n = 30), other infiltrates (n = 31), or normal chest x-ray (n = 94). Plasma levels of 7 host response biomarkers at presentation were measured by ELISA. Associations between biomarker levels and radiological findings were assessed by Kruskal-Wallis test and multivariable logistic regression. Biomarker ability to predict radiological findings was evaluated using receiver operating characteristic curve analysis and Classification and Regression Tree analysis.

RESULTS

Compared to children with normal x-ray, children with end-point pneumonia had significantly higher C-reactive protein, procalcitonin and Chitinase 3-like-1, while those with other infiltrates had elevated procalcitonin and von Willebrand Factor and decreased soluble Tie-2 and endoglin. Clinical variables were not predictive of radiological findings. Classification and Regression Tree analysis generated multi-marker models with improved performance over single markers for discriminating between groups. A model based on C-reactive protein and Chitinase 3-like-1 discriminated between end-point pneumonia and non-end-point pneumonia with 93.3% sensitivity (95% confidence interval 76.5-98.8), 80.8% specificity (72.6-87.1), positive likelihood ratio 4.9 (3.4-7.1), negative likelihood ratio 0.083 (0.022-0.32), and misclassification rate 0.20 (standard error 0.038).

CONCLUSIONS

In Tanzanian children with WHO-defined clinical pneumonia, combinations of host biomarkers distinguished between end-point pneumonia, other infiltrates, and normal chest x-ray, whereas clinical variables did not. These findings generate pathophysiological hypotheses and may have potential research and clinical utility.

摘要

背景

在资源匮乏地区,诊断儿童肺炎具有挑战性。世界卫生组织(WHO)已定义了用于流行病学和疫苗研究的主要终点放射性肺炎。然而,放射成像需要专业知识,且通常难以实现。我们假设炎症和内皮激活的血浆生物标志物可能是终点肺炎的有用替代指标,并可能为其生物学意义提供见解。

方法

我们在一个前瞻性队列中研究了1005名连续到坦桑尼亚门诊就诊的发热儿童,其中155名患有WHO定义的临床肺炎。根据X线检查结果,参与者被分类为主要终点肺炎(n = 30)、其他浸润(n = 31)或胸部X线正常(n = 94)。通过酶联免疫吸附测定法(ELISA)测量就诊时7种宿主反应生物标志物的血浆水平。通过Kruskal-Wallis检验和多变量逻辑回归评估生物标志物水平与放射学结果之间的关联。使用受试者工作特征曲线分析和分类与回归树分析评估生物标志物预测放射学结果的能力。

结果

与胸部X线正常的儿童相比,终点肺炎儿童的C反应蛋白、降钙素原和几丁质酶3样蛋白1水平显著更高,而其他浸润儿童的降钙素原和血管性血友病因子水平升高,可溶性Tie-2和内皮糖蛋白水平降低。临床变量不能预测放射学结果。分类与回归树分析生成了多标志物模型,其在区分组间的性能上优于单标志物。基于C反应蛋白和几丁质酶3样蛋白1的模型区分终点肺炎和非终点肺炎的灵敏度为93.3%(95%置信区间76.5 - 98.8),特异性为80.8%(72.6 - 87.1),阳性似然比为4.9(3.4 - 7.1),阴性似然比为0.083(0.022 - 0.32),误分类率为0.20(标准误差0.038)。

结论

在患有WHO定义的临床肺炎的坦桑尼亚儿童中,宿主生物标志物组合可区分终点肺炎、其他浸润和胸部X线正常情况,而临床变量则不能。这些发现产生了病理生理学假设,可能具有潜在的研究和临床应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce81/4569067/af4ac0850f4d/pone.0137592.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验