Hartsfield Thomas, Chang Wei-Shun, Yang Seung-Cheol, Ma Tzuhsuan, Shi Jinwei, Sun Liuyang, Shvets Gennady, Link Stephan, Li Xiaoqin
Department of Physics, The University of Texas at Austin, Austin, TX 78712; Center for Complex Quantum Systems, The University of Texas at Austin, Austin, TX 78712;
Department of Chemistry, Rice University, Houston, TX 77005;
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12288-92. doi: 10.1073/pnas.1508642112. Epub 2015 Sep 8.
Plasmonic cavities represent a promising platform for controlling light-matter interaction due to their exceptionally small mode volume and high density of photonic states. Using plasmonic cavities for enhancing light's coupling to individual two-level systems, such as single semiconductor quantum dots (QD), is particularly desirable for exploring cavity quantum electrodynamic (QED) effects and using them in quantum information applications. The lack of experimental progress in this area is in part due to the difficulty of precisely placing a QD within nanometers of the plasmonic cavity. Here, we study the simplest plasmonic cavity in the form of a spherical metallic nanoparticle (MNP). By controllably positioning a semiconductor QD in the close proximity of the MNP cavity via atomic force microscope (AFM) manipulation, the scattering spectrum of the MNP is dramatically modified due to Fano interference between the classical plasmonic resonance of the MNP and the quantized exciton resonance in the QD. Moreover, our experiment demonstrates that a single two-level system can render a spherical MNP strongly anisotropic. These findings represent an important step toward realizing quantum plasmonic devices.
等离子体腔由于其极小的模式体积和高光子态密度,是控制光与物质相互作用的一个很有前景的平台。利用等离子体腔增强光与单个二能级系统(如单个半导体量子点(QD))的耦合,对于探索腔量子电动力学(QED)效应并将其应用于量子信息领域尤为重要。该领域缺乏实验进展部分是由于难以将量子点精确放置在距离等离子体腔纳米级的范围内。在此,我们研究了球形金属纳米颗粒(MNP)形式的最简单的等离子体腔。通过原子力显微镜(AFM)操作将半导体量子点可控地定位在MNP腔的附近,由于MNP的经典等离子体共振与量子点中的量子化激子共振之间的法诺干涉,MNP的散射光谱发生了显著变化。此外,我们的实验表明单个二能级系统可以使球形MNP具有很强的各向异性。这些发现代表了朝着实现量子等离子体器件迈出的重要一步。