Davare Monika A, Vellore Nadeem A, Wagner Jacob P, Eide Christopher A, Goodman James R, Drilon Alexander, Deininger Michael W, O'Hare Thomas, Druker Brian J
Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239; Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239;
Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT 84112; Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, UT 84112;
Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):E5381-90. doi: 10.1073/pnas.1515281112. Epub 2015 Sep 8.
Oncogenic ROS1 fusion proteins are molecular drivers in multiple malignancies, including a subset of non-small cell lung cancer (NSCLC). The phylogenetic proximity of the ROS1 and anaplastic lymphoma kinase (ALK) catalytic domains led to the clinical repurposing of the Food and Drug Administration (FDA)-approved ALK inhibitor crizotinib as a ROS1 inhibitor. Despite the antitumor activity of crizotinib observed in both ROS1- and ALK-rearranged NSCLC patients, resistance due to acquisition of ROS1 or ALK kinase domain mutations has been observed clinically, spurring the development of second-generation inhibitors. Here, we profile the sensitivity and selectivity of seven ROS1 and/or ALK inhibitors at various levels of clinical development. In contrast to crizotinib's dual ROS1/ALK activity, cabozantinib (XL-184) and its structural analog foretinib (XL-880) demonstrate a striking selectivity for ROS1 over ALK. Molecular dynamics simulation studies reveal structural features that distinguish the ROS1 and ALK kinase domains and contribute to differences in binding site and kinase selectivity of the inhibitors tested. Cell-based resistance profiling studies demonstrate that the ROS1-selective inhibitors retain efficacy against the recently reported CD74-ROS1(G2032R) mutant whereas the dual ROS1/ALK inhibitors are ineffective. Taken together, inhibitor profiling and stringent characterization of the structure-function differences between the ROS1 and ALK kinase domains will facilitate future rational drug design for ROS1- and ALK-driven NSCLC and other malignancies.
致癌性ROS1融合蛋白是多种恶性肿瘤的分子驱动因素,包括一部分非小细胞肺癌(NSCLC)。ROS1和间变性淋巴瘤激酶(ALK)催化结构域在系统发育上的接近性,导致美国食品药品监督管理局(FDA)批准的ALK抑制剂克唑替尼被临床重新用作ROS1抑制剂。尽管在ROS1和ALK重排的NSCLC患者中均观察到克唑替尼的抗肿瘤活性,但临床上已观察到因获得ROS1或ALK激酶结构域突变而产生的耐药性,这促使了第二代抑制剂的开发。在此,我们分析了七种处于不同临床开发阶段的ROS1和/或ALK抑制剂的敏感性和选择性。与克唑替尼的双重ROS1/ALK活性不同,卡博替尼(XL-184)及其结构类似物福瑞替尼(XL-880)对ROS1的选择性明显高于ALK。分子动力学模拟研究揭示了区分ROS1和ALK激酶结构域的结构特征,并导致所测试抑制剂的结合位点和激酶选择性存在差异。基于细胞的耐药性分析研究表明,ROS1选择性抑制剂对最近报道的CD74-ROS1(G2032R)突变体仍具有疗效,而双重ROS1/ALK抑制剂则无效。综上所述,抑制剂分析以及对ROS1和ALK激酶结构域之间结构-功能差异的严格表征,将有助于未来针对ROS1和ALK驱动的NSCLC及其他恶性肿瘤进行合理的药物设计。