Suppr超能文献

引入细菌乙酰辅酶A合成途径可提高酿酒酵母中乳酸的产量。

Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.

作者信息

Song Ji-Yoon, Park Joon-Song, Kang Chang Duk, Cho Hwa-Young, Yang Dongsik, Lee Seunghyun, Cho Kwang Myung

机构信息

Biomaterials Laboratory, Material Research Center, Samsung Advanced Institute of Technology, Gyeonggi-do, Republic of Korea.

Biomaterials Laboratory, Material Research Center, Samsung Advanced Institute of Technology, Gyeonggi-do, Republic of Korea.

出版信息

Metab Eng. 2016 May;35:38-45. doi: 10.1016/j.ymben.2015.09.006. Epub 2015 Sep 15.

Abstract

Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142g/L with production yield of 0.89g/g and productivity of 3.55gL(-1)h(-1) under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast.

摘要

通过表达异源乳酸脱氢酶(LDH)基因,并减弱包括3-磷酸甘油脱氢酶1(GPD1)和细胞色素c氧化还原酶2(CYB2)在内的几个关键途径基因,构建了耐酸酿酒酵母以生产乳酸。为了进一步提高乳酸产量,通过破坏丙酮酸脱羧酶1(PDC1)和乙醇脱氢酶1(ADH1)基因来减弱乙醇生产途径。尽管乳酸产量有所增加,但由于缺乏ADH1导致生长速率和葡萄糖消耗速率严重降低,从而使整体生产力大幅下降。在Δadh1细胞中,作为生物可应用成分关键前体的乙酰辅酶A水平可能不足以支持正常细胞生长。为了增加细胞内乙酰辅酶A的供应,我们将细菌乙酰化乙醛脱氢酶(A-ALD)(EC 1.2.1.10)基因导入产乳酸的酿酒酵母中。表达了源自大肠杆菌的A-ALD基因mhpF和eutE,并有效补充了酵母中减弱的乙醛脱氢酶(ALD)/乙酰辅酶A合成酶(ACS)途径。具有异源乙酰辅酶A合成途径的工程菌株显示出更高的葡萄糖消耗速率和更高的乳酸发酵生产力。在生物反应器中进行补料分批发酵时,乳酸产量达到142g/L,产率为0.89g/g,生产力为3.55gL(-1)h(-1)。本研究展示了一种通过对酵母中乙酰辅酶A生物合成途径进行代谢工程来提高乳酸生产力的新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验