Suppr超能文献

核糖体蛋白基因协同调控的分子机制

Molecular mechanisms of ribosomal protein gene coregulation.

作者信息

Reja Rohit, Vinayachandran Vinesh, Ghosh Sujana, Pugh B Franklin

机构信息

Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

Genes Dev. 2015 Sep 15;29(18):1942-54. doi: 10.1101/gad.268896.115.

Abstract

The 137 ribosomal protein genes (RPGs) of Saccharomyces provide a model for gene coregulation. We examined the positional and functional organization of their regulators (Rap1 [repressor activator protein 1], Fhl1, Ifh1, Sfp1, and Hmo1), the transcription machinery (TFIIB, TFIID, and RNA polymerase II), and chromatin at near-base-pair resolution using ChIP-exo, as RPGs are coordinately reprogrammed. Where Hmo1 is enriched, Fhl1, Ifh1, Sfp1, and Hmo1 cross-linked broadly to promoter DNA in an RPG-specific manner and demarcated by general minor groove widening. Importantly, Hmo1 extended 20-50 base pairs (bp) downstream from Fhl1. Upon RPG repression, Fhl1 remained in place. Hmo1 dissociated, which was coupled to an upstream shift of the +1 nucleosome, as reflected by the Hmo1 extension and core promoter region. Fhl1 and Hmo1 may create two regulatable and positionally distinct barriers, against which chromatin remodelers position the +1 nucleosome into either an activating or a repressive state. Consistent with in vitro studies, we found that specific TFIID subunits, in addition to cross-linking at the core promoter, made precise cross-links at Rap1 sites, which we interpret to reflect native Rap1-TFIID interactions. Our findings suggest how sequence-specific DNA binding regulates nucleosome positioning and transcription complex assembly >300 bp away and how coregulation coevolved with coding sequences.

摘要

酿酒酵母的137个核糖体蛋白基因(RPGs)为基因协同调控提供了一个模型。我们使用ChIP-exo技术,以近碱基对分辨率研究了其调控因子(Rap1[阻遏激活蛋白1]、Fhl1、Ifh1、Sfp1和Hmo1)、转录机制(TFIIB、TFIID和RNA聚合酶II)以及染色质的位置和功能组织,因为RPGs是协同重编程的。在Hmo1富集的地方,Fhl1、Ifh1、Sfp1和Hmo1以RPG特异性方式广泛交联到启动子DNA上,并由一般的小沟变宽来界定。重要的是,Hmo1从Fhl1下游延伸20 - 50个碱基对(bp)。在RPG抑制时,Fhl1保持原位。Hmo1解离,这与+1核小体的上游移位相关,如Hmo1延伸和核心启动子区域所反映的那样。Fhl1和Hmo1可能形成两个可调控且位置不同的屏障,染色质重塑因子将+1核小体定位在这两个屏障上,使其处于激活或抑制状态。与体外研究一致,我们发现特定的TFIID亚基除了在核心启动子处交联外,还在Rap1位点进行精确交联,我们将其解释为反映天然的Rap1 - TFIID相互作用。我们的研究结果表明了序列特异性DNA结合如何调控300 bp以外的核小体定位和转录复合物组装,以及协同调控如何与编码序列共同进化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e3/4579351/025c2bef5f82/1942f01.jpg

相似文献

1
Molecular mechanisms of ribosomal protein gene coregulation.
Genes Dev. 2015 Sep 15;29(18):1942-54. doi: 10.1101/gad.268896.115.
3
Assembly of regulatory factors on rRNA and ribosomal protein genes in Saccharomyces cerevisiae.
Mol Cell Biol. 2007 Oct;27(19):6686-705. doi: 10.1128/MCB.00876-07. Epub 2007 Jul 23.
5
Saccharomyces cerevisiae HMO1 interacts with TFIID and participates in start site selection by RNA polymerase II.
Nucleic Acids Res. 2008 Mar;36(4):1343-57. doi: 10.1093/nar/gkm1068. Epub 2008 Jan 10.
6
Fine-structure analysis of ribosomal protein gene transcription.
Mol Cell Biol. 2006 Jul;26(13):4853-62. doi: 10.1128/MCB.02367-05.
9
Transcriptional control of ribosome biogenesis in yeast: links to growth and stress signals.
Biochem Soc Trans. 2021 Aug 27;49(4):1589-1599. doi: 10.1042/BST20201136.

引用本文的文献

2
Ribosome Structural Changes Dynamically Affect Ribosome Function.
Int J Mol Sci. 2024 Oct 17;25(20):11186. doi: 10.3390/ijms252011186.
4
Hmo1: A versatile member of the high mobility group box family of chromosomal architecture proteins.
World J Biol Chem. 2024 Aug 12;15(1):97938. doi: 10.4331/wjbc.v15.i1.97938.
6
Fission Yeast TORC1 Promotes Cell Proliferation through Sfp1, a Transcription Factor Involved in Ribosome Biogenesis.
Mol Cell Biol. 2023;43(12):675-692. doi: 10.1080/10985549.2023.2282349. Epub 2023 Dec 20.
7
Context-dependent function of the transcriptional regulator Rap1 in gene silencing and activation in .
Proc Natl Acad Sci U S A. 2023 Oct 3;120(40):e2304343120. doi: 10.1073/pnas.2304343120. Epub 2023 Sep 28.
8
Context dependent function of the transcriptional regulator Rap1 in gene silencing and activation in .
bioRxiv. 2023 May 11:2023.05.08.539937. doi: 10.1101/2023.05.08.539937.
9
Differential Hsp90-dependent gene expression is strain-specific and common among yeast strains.
iScience. 2023 Apr 10;26(5):106635. doi: 10.1016/j.isci.2023.106635. eCollection 2023 May 19.
10
SIR telomere silencing depends on nuclear envelope lipids and modulates sensitivity to a lysolipid.
J Cell Biol. 2023 Jul 3;222(7). doi: 10.1083/jcb.202206061. Epub 2023 Apr 12.

本文引用的文献

2
Gcn5 and sirtuins regulate acetylation of the ribosomal protein transcription factor Ifh1.
Curr Biol. 2013 Sep 9;23(17):1638-48. doi: 10.1016/j.cub.2013.06.050. Epub 2013 Aug 22.
3
Direct TFIIA-TFIID protein contacts drive budding yeast ribosomal protein gene transcription.
J Biol Chem. 2013 Aug 9;288(32):23273-94. doi: 10.1074/jbc.M113.486829. Epub 2013 Jun 27.
4
DNAshape: a method for the high-throughput prediction of DNA structural features on a genomic scale.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W56-62. doi: 10.1093/nar/gkt437. Epub 2013 May 22.
6
Genome-wide nucleosome specificity and directionality of chromatin remodelers.
Cell. 2012 Jun 22;149(7):1461-73. doi: 10.1016/j.cell.2012.04.036.
7
Genome-wide structure and organization of eukaryotic pre-initiation complexes.
Nature. 2012 Jan 18;483(7389):295-301. doi: 10.1038/nature10799.
8
Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution.
Cell. 2011 Dec 9;147(6):1408-19. doi: 10.1016/j.cell.2011.11.013.
9
Compensation for differences in gene copy number among yeast ribosomal proteins is encoded within their promoters.
Genome Res. 2011 Dec;21(12):2114-28. doi: 10.1101/gr.119669.110. Epub 2011 Oct 18.
10
A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization.
Science. 2011 Sep 23;333(6050):1758-60. doi: 10.1126/science.1206097.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验