Suppr超能文献

植物源口服疫苗防治人类传染性疾病:我们做到了吗?

Plant-made oral vaccines against human infectious diseases-Are we there yet?

机构信息

Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Plant Biotechnol J. 2015 Oct;13(8):1056-70. doi: 10.1111/pbi.12471. Epub 2015 Sep 7.

Abstract

Although the plant-made vaccine field started three decades ago with the promise of developing low-cost vaccines to prevent infectious disease outbreaks and epidemics around the globe, this goal has not yet been achieved. Plants offer several major advantages in vaccine generation, including low-cost production by eliminating expensive fermentation and purification systems, sterile delivery and cold storage/transportation. Most importantly, oral vaccination using plant-made antigens confers both mucosal (IgA) and systemic (IgG) immunity. Studies in the past 5 years have made significant progress in expressing vaccine antigens in edible leaves (especially lettuce), processing leaves or seeds through lyophilization and achieving antigen stability and efficacy after prolonged storage at ambient temperatures. Bioencapsulation of antigens in plant cells protects them from the digestive system; the fusion of antigens to transmucosal carriers enhances efficiency of their delivery to the immune system and facilitates successful development of plant vaccines as oral boosters. However, the lack of oral priming approaches diminishes these advantages because purified antigens, cold storage/transportation and limited shelf life are still major challenges for priming with adjuvants and for antigen delivery by injection. Yet another challenge is the risk of inducing tolerance without priming the host immune system. Therefore, mechanistic aspects of these two opposing processes (antibody production or suppression) are discussed in this review. In addition, we summarize recent progress made in oral delivery of vaccine antigens expressed in plant cells via the chloroplast or nuclear genomes and potential challenges in achieving immunity against infectious diseases using cold-chain-free vaccine delivery approaches.

摘要

尽管植物制造疫苗领域在三十年前就已经起步,承诺开发低成本疫苗以预防全球范围内的传染病爆发和流行,但这一目标尚未实现。植物在疫苗生产方面具有几个主要优势,包括通过消除昂贵的发酵和纯化系统来实现低成本生产、无菌输送和冷藏/运输。最重要的是,使用植物制造的抗原进行口服接种可同时产生黏膜(IgA)和系统(IgG)免疫。过去 5 年的研究在表达疫苗抗原方面取得了重大进展,可将抗原表达在可食用的叶片(尤其是生菜)中,通过冷冻干燥处理叶片或种子,并在常温下长时间储存后保持抗原的稳定性和功效。将抗原生物封装在植物细胞中可保护它们免受消化系统的影响;将抗原融合到黏膜载体上可提高其向免疫系统传递的效率,并促进植物疫苗作为口服增强剂的成功开发。然而,缺乏口服启动方法削弱了这些优势,因为纯化抗原、冷藏/运输和有限的保质期仍然是用佐剂进行启动以及通过注射进行抗原传递的主要挑战。另一个挑战是在不启动宿主免疫系统的情况下诱导耐受的风险。因此,本文讨论了这两个相反过程(抗体产生或抑制)的机制方面。此外,我们总结了最近在通过叶绿体或核基因组表达植物细胞中的疫苗抗原的口服传递方面取得的进展,以及在使用无冷链疫苗传递方法实现针对传染病的免疫方面的潜在挑战。

相似文献

1
Plant-made oral vaccines against human infectious diseases-Are we there yet?
Plant Biotechnol J. 2015 Oct;13(8):1056-70. doi: 10.1111/pbi.12471. Epub 2015 Sep 7.
2
Mucosal immunization using recombinant plant-based oral vaccines.
Methods. 2006 Feb;38(2):150-7. doi: 10.1016/j.ymeth.2005.09.013.
3
Cold chain and virus-free chloroplast-made booster vaccine to confer immunity against different poliovirus serotypes.
Plant Biotechnol J. 2016 Nov;14(11):2190-2200. doi: 10.1111/pbi.12575. Epub 2016 Jun 1.
4
Production of biopharmaceuticals and vaccines in plants via the chloroplast genome.
Biotechnol J. 2006 Oct;1(10):1071-9. doi: 10.1002/biot.200600145.
5
Transgenic plant-based oral vaccines.
Immunol Invest. 2010;39(4-5):468-82. doi: 10.3109/08820131003622643.
6
Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells.
Adv Drug Deliv Rev. 2013 Jun 15;65(6):782-99. doi: 10.1016/j.addr.2012.10.005. Epub 2012 Oct 23.
8
Rice seed for delivery of vaccines to gut mucosal immune tissues.
Plant Biotechnol J. 2015 Oct;13(8):1041-55. doi: 10.1111/pbi.12423. Epub 2015 Jun 23.
9
Edible plants for oral delivery of biopharmaceuticals.
Br J Clin Pharmacol. 2017 Jan;83(1):71-81. doi: 10.1111/bcp.12949. Epub 2016 May 9.
10
New generation of mucosal adjuvants for the induction of protective immunity.
Rev Med Virol. 2003 Sep-Oct;13(5):293-310. doi: 10.1002/rmv.398.

引用本文的文献

1
Plant genetic transformation: achievements, current status and future prospects.
Plant Biotechnol J. 2025 Jun;23(6):2034-2058. doi: 10.1111/pbi.70028. Epub 2025 Mar 7.
2
Molecular Farming for Immunization: Current Advances and Future Prospects in Plant-Produced Vaccines.
Vaccines (Basel). 2025 Feb 15;13(2):191. doi: 10.3390/vaccines13020191.
5
Advances in Subcellular Accumulation Design for Recombinant Protein Production in Tobacco.
Biodes Res. 2024 Aug 28;6:0047. doi: 10.34133/bdr.0047. eCollection 2024.
6
Recent development of oral vaccines (Review).
Exp Ther Med. 2024 Mar 22;27(5):223. doi: 10.3892/etm.2024.12511. eCollection 2024 May.
7
Seed-specific expression of porcine verotoxigenic Escherichia coli antigens in tobacco plants as a potential model of edible vaccines.
Vet Res Commun. 2024 Jun;48(3):1435-1447. doi: 10.1007/s11259-024-10318-y. Epub 2024 Feb 6.
8
A Novel Probiotic-Based Oral Vaccine against SARS-CoV-2 Omicron Variant B.1.1.529.
Int J Mol Sci. 2023 Sep 11;24(18):13931. doi: 10.3390/ijms241813931.
9
Exigency of Plant-Based Vaccine against COVID-19 Emergence as Pandemic Preparedness.
Vaccines (Basel). 2023 Aug 9;11(8):1347. doi: 10.3390/vaccines11081347.
10
Oral Vaccines: A Better Future of Immunization.
Vaccines (Basel). 2023 Jul 12;11(7):1232. doi: 10.3390/vaccines11071232.

本文引用的文献

1
Oral delivery of wafers made from HBsAg-expressing maize germ induces long-term immunological systemic and mucosal responses.
Vaccine. 2015 Jun 9;33(25):2881-6. doi: 10.1016/j.vaccine.2015.04.080. Epub 2015 May 2.
2
Infection by Toxoplasma gondii, a severe parasite in neonates and AIDS patients, causes impaired anion secretion in airway epithelia.
Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4435-40. doi: 10.1073/pnas.1503474112. Epub 2015 Mar 23.
4
Delivery strategies to enhance oral vaccination against enteric infections.
Adv Drug Deliv Rev. 2015 Aug 30;91:52-69. doi: 10.1016/j.addr.2015.03.007. Epub 2015 Mar 25.
5
Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.
Biotechnol Adv. 2015 Nov 1;33(6 Pt 2):1005-23. doi: 10.1016/j.biotechadv.2015.03.007. Epub 2015 Mar 14.
6
A Plant-Derived Multi-HIV Antigen Induces Broad Immune Responses in Orally Immunized Mice.
Mol Biotechnol. 2015 Jul;57(7):662-74. doi: 10.1007/s12033-015-9856-3.
7
Expression of Multiple Taenia Solium Immunogens in Plant Cells Through a Ribosomal Skip Mechanism.
Mol Biotechnol. 2015 Jul;57(7):635-43. doi: 10.1007/s12033-015-9853-6.
9
Antigen administration by continuous feeding enhances oral tolerance and leads to long-lasting effects.
J Immunol Methods. 2015 Jun;421:36-43. doi: 10.1016/j.jim.2015.02.005. Epub 2015 Feb 20.
10
Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+CD4+ T cells.
Blood. 2015 Apr 9;125(15):2418-27. doi: 10.1182/blood-2014-08-597070. Epub 2015 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验