Suppr超能文献

根据靶点特征识别有问题的药物。

Identifying problematic drugs based on the characteristics of their targets.

作者信息

Lopes Tiago J S, Shoemaker Jason E, Matsuoka Yukiko, Kawaoka Yoshihiro, Kitano Hiroaki

机构信息

Japan Science and Technology Agency ERATO Kawaoka Infection-Induced Host Responses Project Minato-ku, Japan ; Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison Madison, WI, USA ; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo Tokyo, Japan.

Japan Science and Technology Agency ERATO Kawaoka Infection-Induced Host Responses Project Minato-ku, Japan ; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo Tokyo, Japan.

出版信息

Front Pharmacol. 2015 Sep 1;6:186. doi: 10.3389/fphar.2015.00186. eCollection 2015.

Abstract

Identifying promising compounds during the early stages of drug development is a major challenge for both academia and the pharmaceutical industry. The difficulties are even more pronounced when we consider multi-target pharmacology, where the compounds often target more than one protein, or multiple compounds are used together. Here, we address this problem by using machine learning and network analysis to process sequence and interaction data from human proteins to identify promising compounds. We used this strategy to identify properties that make certain proteins more likely to cause harmful effects when targeted; such proteins usually have domains commonly found throughout the human proteome. Additionally, since currently marketed drugs hit multiple targets simultaneously, we combined the information from individual proteins to devise a score that quantifies the likelihood of a compound being harmful to humans. This approach enabled us to distinguish between approved and problematic drugs with an accuracy of 60-70%. Moreover, our approach can be applied as soon as candidate drugs are available, as demonstrated with predictions for more than 5000 experimental drugs. These resources are available at http://sourceforge.net/projects/psin/.

摘要

在药物研发的早期阶段识别有前景的化合物,对学术界和制药行业来说都是一项重大挑战。当我们考虑多靶点药理学时,困难更为明显,因为在多靶点药理学中,化合物通常靶向不止一种蛋白质,或者多种化合物一起使用。在这里,我们通过使用机器学习和网络分析来处理来自人类蛋白质的序列和相互作用数据,以识别有前景的化合物,从而解决这个问题。我们使用这种策略来识别某些蛋白质在被靶向时更有可能产生有害影响的特性;这类蛋白质通常具有在整个人类蛋白质组中普遍存在的结构域。此外,由于目前上市的药物会同时作用于多个靶点,我们整合了来自各个蛋白质的信息,设计出一个分数来量化一种化合物对人类有害的可能性。这种方法使我们能够以60% - 70%的准确率区分获批药物和有问题的药物。此外,我们的方法在候选药物一出现时就可以应用,对5000多种实验性药物的预测就证明了这一点。这些资源可在http://sourceforge.net/projects/psin/获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b81b/4555035/e9a5f29b2031/fphar-06-00186-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验