Suppr超能文献

常微分方程的正则化半参数估计

Regularized Semiparametric Estimation for Ordinary Differential Equations.

作者信息

Li Yun, Zhu Ji, Wang Naisyin

机构信息

Department of Statistics, University of Michigan.

出版信息

Technometrics. 2015 Jul 1;57(3):341-350. doi: 10.1080/00401706.2015.1006338.

Abstract

Ordinary differential equations (ODEs) are widely used in modeling dynamic systems and have ample applications in the fields of physics, engineering, economics and biological sciences. The ODE parameters often possess physiological meanings and can help scientists gain better understanding of the system. One key interest is thus to well estimate these parameters. Ideally, constant parameters are preferred due to their easy interpretation. In reality, however, constant parameters can be too restrictive such that even after incorporating error terms, there could still be unknown sources of disturbance that lead to poor agreement between observed data and the estimated ODE system. In this paper, we address this issue and accommodate short-term interferences by allowing parameters to vary with time. We propose a new regularized estimation procedure on the time-varying parameters of an ODE system so that these parameters could change with time during transitions but remain constants within stable stages. We found, through simulation studies, that the proposed method performs well and tends to have less variation in comparison to the non-regularized approach. On the theoretical front, we derive finite-sample estimation error bounds for the proposed method. Applications of the proposed method to modeling the hare-lynx relationship and the measles incidence dynamic in Ontario, Canada lead to satisfactory and meaningful results.

摘要

常微分方程(ODEs)在动态系统建模中被广泛应用,在物理、工程、经济和生物科学领域有大量应用。ODE参数通常具有生理学意义,能帮助科学家更好地理解系统。因此,一个关键的关注点是准确估计这些参数。理想情况下,常数参数因其易于解释而更受青睐。然而,在现实中,常数参数可能过于受限,以至于即使纳入误差项后,仍可能存在未知的干扰源,导致观测数据与估计的ODE系统之间拟合不佳。在本文中,我们解决了这个问题,并通过允许参数随时间变化来处理短期干扰。我们针对ODE系统的时变参数提出了一种新的正则化估计方法,使这些参数在过渡期间随时间变化,但在稳定阶段保持恒定。通过模拟研究,我们发现所提出的方法表现良好,与非正则化方法相比,其变化往往较小。在理论方面,我们推导了所提出方法的有限样本估计误差界。将所提出的方法应用于加拿大安大略省野兔 - 猞猁关系建模和麻疹发病率动态建模,得到了令人满意且有意义的结果。

相似文献

1
Regularized Semiparametric Estimation for Ordinary Differential Equations.
Technometrics. 2015 Jul 1;57(3):341-350. doi: 10.1080/00401706.2015.1006338.
2
Robust estimation for ordinary differential equation models.
Biometrics. 2011 Dec;67(4):1305-13. doi: 10.1111/j.1541-0420.2011.01577.x. Epub 2011 Mar 14.
3
Parameter Estimation for Semiparametric Ordinary Differential Equation Models.
Commun Stat Theory Methods. 2019;48(24):5985-6004. doi: 10.1080/03610926.2018.1523433. Epub 2018 Dec 29.
4
Inference in dynamic systems using B-splines and quasilinearized ODE penalties.
Biom J. 2016 May;58(3):691-714. doi: 10.1002/bimj.201500082. Epub 2015 Nov 25.
7
On the selection of ordinary differential equation models with application to predator-prey dynamical models.
Biometrics. 2015 Mar;71(1):131-138. doi: 10.1111/biom.12243. Epub 2014 Oct 6.
9
Using spline-enhanced ordinary differential equations for PK/PD model development.
J Pharmacokinet Pharmacodyn. 2008 Oct;35(5):553-71. doi: 10.1007/s10928-008-9101-9. Epub 2008 Nov 7.
10
Estimation of Ordinary Differential Equation Models for Gene Regulatory Networks Through Data Cloning.
J Comput Biol. 2023 May;30(5):609-618. doi: 10.1089/cmb.2022.0201. Epub 2023 Mar 10.

本文引用的文献

2
Parameterizing state-space models for infectious disease dynamics by generalized profiling: measles in Ontario.
J R Soc Interface. 2011 Jul 6;8(60):961-74. doi: 10.1098/rsif.2010.0412. Epub 2010 Nov 17.
3
Parameter Estimation for Differential Equation Models Using a Framework of Measurement Error in Regression Models.
J Am Stat Assoc. 2008 Dec 1;103(484):1570-1583. doi: 10.1198/016214508000000797.
4
Impulses and Physiological States in Theoretical Models of Nerve Membrane.
Biophys J. 1961 Jul;1(6):445-66. doi: 10.1016/s0006-3495(61)86902-6.
5
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
6
Transients and attractors in epidemics.
Proc Biol Sci. 2003 Aug 7;270(1524):1573-8. doi: 10.1098/rspb.2003.2410.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验