文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于全基因组整合的方法有助于解析鹰嘴豆花期复杂数量性状的遗传基础。

A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea.

机构信息

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India.

National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.

出版信息

Plant Mol Biol. 2015 Nov;89(4-5):403-20. doi: 10.1007/s11103-015-0377-z. Epub 2015 Sep 22.


DOI:10.1007/s11103-015-0377-z
PMID:26394865
Abstract

A combinatorial approach of candidate gene-based association analysis and genome-wide association study (GWAS) integrated with QTL mapping, differential gene expression profiling and molecular haplotyping was deployed in the present study for quantitative dissection of complex flowering time trait in chickpea. Candidate gene-based association mapping in a flowering time association panel (92 diverse desi and kabuli accessions) was performed by employing the genotyping information of 5724 SNPs discovered from 82 known flowering chickpea gene orthologs of Arabidopsis and legumes as well as 832 gene-encoding transcripts that are differentially expressed during flower development in chickpea. GWAS using both genome-wide GBS- and candidate gene-based genotyping data of 30,129 SNPs in a structured population of 92 sequenced accessions (with 200-250 kb LD decay) detected eight maximum effect genomic SNP loci (genes) associated (34% combined PVE) with flowering time. Six flowering time-associated major genomic loci harbouring five robust QTLs mapped on a high-resolution intra-specific genetic linkage map were validated (11.6-27.3% PVE at 5.4-11.7 LOD) further by traditional QTL mapping. The flower-specific expression, including differential up- and down-regulation (>three folds) of eight flowering time-associated genes (including six genes validated by QTL mapping) especially in early flowering than late flowering contrasting chickpea accessions/mapping individuals during flower development was evident. The gene haplotype-based LD mapping discovered diverse novel natural allelic variants and haplotypes in eight genes with high trait association potential (41% combined PVE) for flowering time differentiation in cultivated and wild chickpea. Taken together, eight potential known/candidate flowering time-regulating genes [efl1 (early flowering 1), FLD (Flowering locus D), GI (GIGANTEA), Myb (Myeloblastosis), SFH3 (SEC14-like 3), bZIP (basic-leucine zipper), bHLH (basic helix-loop-helix) and SBP (SQUAMOSA promoter binding protein)], including novel markers, QTLs, alleles and haplotypes delineated by aforesaid genome-wide integrated approach have potential for marker-assisted genetic improvement and unravelling the domestication pattern of flowering time in chickpea.

摘要

本研究采用候选基因关联分析和全基因组关联研究(GWAS)相结合的组合方法,结合 QTL 作图、差异基因表达谱分析和分子单体型分析,对鹰嘴豆复杂开花时间性状进行定量剖析。在一个开花时间关联面板(92 个不同的 Desi 和 Kabuli 品种)中进行了基于候选基因的关联作图,该面板使用了从 82 个已知的拟南芥和豆类开花鹰嘴豆基因直系同源物以及 832 个在鹰嘴豆花发育过程中差异表达的基因编码转录本中发现的 5724 个 SNP 的基因型信息。在一个由 92 个已测序品种(200-250 kb LD 衰减)组成的结构群体中,使用全基因组 GBS 和基于候选基因的 30129 个 SNP 的 GWAS 检测到与开花时间相关的 8 个最大效应基因组 SNP 位点(基因)(34%的联合 PVE)。六个与开花时间相关的主要基因组位点包含五个稳健的 QTL,这些 QTL映射在一个高分辨率的种内遗传连锁图谱上,通过传统的 QTL 作图进一步验证(5.4-11.7 LOD 时的 11.6-27.3% PVE)。在花发育过程中,特别是在早开花和晚开花的鹰嘴豆品种/作图个体中,发现了与 8 个开花时间相关基因(包括通过 QTL 作图验证的 6 个基因)的特异性表达,包括差异上调和下调(>三倍)。基于基因单体型的 LD 作图发现了 8 个具有高性状关联潜力(41%的联合 PVE)的基因中的多种新型天然等位基因变异体和单体型,这些基因与栽培和野生鹰嘴豆的开花时间分化有关。综上所述,八个潜在的已知/候选开花时间调节基因 [efl1(早期开花 1)、FLD(开花 locus D)、GI(GIGANTEA)、Myb(Myeloblastosis)、SFH3(SEC14-like 3)、bZIP(basic-leucine zipper)、bHLH(basic helix-loop-helix)和 SBP(SQUAMOSA promoter binding protein)],包括通过上述全基因组综合方法划定的新型标记、QTL、等位基因和单体型,具有辅助遗传改良和揭示鹰嘴豆花时间驯化模式的潜力。

相似文献

[1]
A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea.

Plant Mol Biol. 2015-9-22

[2]
Genetic dissection of plant growth habit in chickpea.

Funct Integr Genomics. 2017-11

[3]
Genetic dissection of seed-iron and zinc concentrations in chickpea.

Sci Rep. 2016-4-11

[4]
Identification of candidate genes and natural allelic variants for QTLs governing plant height in chickpea.

Sci Rep. 2016-6-20

[5]
Identification of candidate genes for dissecting complex branch number trait in chickpea.

Plant Sci. 2016-4

[6]
Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea.

DNA Res. 2015-6

[7]
An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea.

DNA Res. 2014-12

[8]
Genome-wide development and deployment of informative intron-spanning and intron-length polymorphism markers for genomics-assisted breeding applications in chickpea.

Plant Sci. 2016-11

[9]
A Multiple QTL-Seq Strategy Delineates Potential Genomic Loci Governing Flowering Time in Chickpea.

Front Plant Sci. 2017-7-11

[10]
Ultra-high density intra-specific genetic linkage maps accelerate identification of functionally relevant molecular tags governing important agronomic traits in chickpea.

Sci Rep. 2015-5-5

引用本文的文献

[1]
Phenotypic and genetic characterization of a near-isogenic line pair: insights into flowering time in chickpea.

BMC Plant Biol. 2024-7-25

[2]
Selection for Phytophthora Root Rot Resistance in Chickpea Crosses Affects Yield Potential of Chickpea × Backcross Derivatives.

Plants (Basel). 2024-5-22

[3]
Flowering time: From physiology, through genetics to mechanism.

Plant Physiol. 2024-4-30

[4]
Novel Alleles from L. for Genetic Improvement of Cultivated Chickpeas Identified through Genome Wide Association Analysis.

Int J Mol Sci. 2024-1-4

[5]
Genome-wide association study as a powerful tool for dissecting competitive traits in legumes.

Front Plant Sci. 2023-8-14

[6]
A superior gene allele involved in abscisic acid signaling enhances drought tolerance and yield in chickpea.

Plant Physiol. 2023-3-17

[7]
Genome-Wide Association Analysis Reveals Trait-Linked Markers for Grain Nutrient and Agronomic Traits in Diverse Set of Chickpea Germplasm.

Cells. 2022-8-8

[8]
Genetic Augmentation of Legume Crops Using Genomic Resources and Genotyping Platforms for Nutritional Food Security.

Plants (Basel). 2022-7-18

[9]
RAD-Seq-Based High-Density Linkage Maps Construction and Quantitative Trait Loci Mapping of Flowering Time Trait in Alfalfa ( L.).

Front Plant Sci. 2022-5-26

[10]
Genome-wide association analysis uncovers the genetic architecture of tradeoff between flowering date and yield components in sesame.

BMC Plant Biol. 2021-11-22

本文引用的文献

[1]
Genetic control of flowering time in legumes.

Front Plant Sci. 2015-4-9

[2]
Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea.

Front Plant Sci. 2015-3-31

[3]
Pea VEGETATIVE2 Is an FD Homolog That Is Essential for Flowering and Compound Inflorescence Development.

Plant Cell. 2015-4

[4]
A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight-regulating candidate gene in chickpea.

Sci Rep. 2015-3-19

[5]
Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation.

Sci Rep. 2015-2-9

[6]
Genome-wide association mapping of salinity tolerance in rice (Oryza sativa).

DNA Res. 2015-4

[7]
Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea.

J Exp Bot. 2015-3

[8]
Genotyping-by-sequencing based intra-specific genetic map refines a ''QTL-hotspot" region for drought tolerance in chickpea.

Mol Genet Genomics. 2015-4

[9]
An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea.

DNA Res. 2014-12

[10]
Natural allelic diversity, genetic structure and linkage disequilibrium pattern in wild chickpea.

PLoS One. 2014-9-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索