Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
Adv Mater. 2015 Dec 9;27(46):7583-619. doi: 10.1002/adma.201501809. Epub 2015 Sep 23.
Organic electronic materials are rapidly emerging as superior replacements for a number of conventional electronic materials, such as metals and semiconductors. Conducting polymers, carbon nanotubes, graphenes, organic light-emitting diodes, and diamond films fabricated via chemical vapor deposition are the most popular organic bioelectronic materials that are currently under active research and development. Besides the capability to translate biological signals to electrical signals or vice versa, organic bioelectronic materials entail greater biocompatibility and biodegradability compared to conventional electronic materials, which makes them more suitable for biomedical applications. When patterned, these materials bring about numerous capabilities to perform various tasks in a more-sophisticated and high-throughput manner. Here, we provide an overview of the unique properties of organic bioelectronic materials, different strategies applied to pattern these materials, and finally their applications in the field of biomedical engineering, particularly biosensing, cell and tissue engineering, actuators, and drug delivery.
有机电子材料正在迅速崛起,成为许多传统电子材料(如金属和半导体)的优秀替代品。通过化学气相沉积制备的导电聚合物、碳纳米管、石墨烯、有机发光二极管和金刚石薄膜是目前正在积极研究和开发的最受欢迎的有机生物电子材料。除了能够将生物信号转换为电信号或反之亦然的能力外,与传统电子材料相比,有机生物电子材料具有更好的生物相容性和可生物降解性,这使得它们更适合生物医学应用。当这些材料被图案化时,它们带来了许多功能,可以以更复杂和高通量的方式执行各种任务。在这里,我们将概述有机生物电子材料的独特性质、应用于这些材料的不同策略,以及它们在生物医学工程领域的应用,特别是生物传感、细胞和组织工程、执行器和药物输送。