Lezcano Dimitri A, Iordachita Iulian I, Kim Jin Seob
Mechanical Engineering Department, Johns Hopkins University, MD 21201 USA.
IEEE Sens J. 2022 Nov 15;22(22):22232-22243. doi: 10.1109/jsen.2022.3212209. Epub 2022 Oct 11.
Flexible bevel-tipped needles are often used for needle insertion in minimally-invasive surgical techniques due to their ability to be steered in cluttered environments. Shapesensing enables physicians to determine the location of needles intra-operatively without requiring radiation of the patient, enabling accurate needle placement. In this paper, we validate a theoretical method for flexible needle shape-sensing that allows for complex curvatures, extending upon a previous sensor-based model. This model combines curvature measurements from fiber Bragg grating (FBG) sensors and the mechanics of an inextensible elastic rod to determine and predict the 3D needle shape during insertion. We evaluate the model's shape sensing capabilities in C- and S-shape insertions in single-layer isotropic tissue, and C-shape insertions in two-layer isotropic tissue. Experiments on a four-active area, FBG-sensorized needle were performed in varying tissue stiffnesses and insertion scenarios under stereo vision to provide the 3D ground truth needle shape. The results validate a viable 3D needle shape-sensing model accounting for complex curvatures in flexible needles with mean needle shape sensing root-mean-square errors of 0.160 ± 0.055 mm over 650 needle insertions.
柔性斜尖针常用于微创手术技术中的针插入操作,因为它们能够在复杂环境中进行导向。形状传感使医生能够在术中确定针的位置,而无需对患者进行辐射,从而实现精确的针放置。在本文中,我们验证了一种用于柔性针形状传感的理论方法,该方法允许复杂的曲率,是在先前基于传感器的模型基础上进行扩展。该模型结合了光纤布拉格光栅(FBG)传感器的曲率测量和不可伸长弹性杆的力学原理,以确定和预测插入过程中的三维针形状。我们在单层各向同性组织中的C形和S形插入以及双层各向同性组织中的C形插入中评估了该模型的形状传感能力。在立体视觉下,对一个具有四个有源区域、装有FBG传感器的针在不同组织刚度和插入场景下进行了实验,以提供三维地面真值针形状。结果验证了一个可行的三维针形状传感模型,该模型考虑了柔性针中的复杂曲率,在650次针插入过程中,平均针形状传感均方根误差为0.160±0.055毫米。