McDowall Jennifer S, Murphy Bonnie J, Haumann Michael, Palmer Tracy, Armstrong Fraser A, Sargent Frank
Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland;
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom; and.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):E3948-56. doi: 10.1073/pnas.1407927111. Epub 2014 Aug 25.
Under anaerobic conditions, Escherichia coli can carry out a mixed-acid fermentation that ultimately produces molecular hydrogen. The enzyme directly responsible for hydrogen production is the membrane-bound formate hydrogenlyase (FHL) complex, which links formate oxidation to proton reduction and has evolutionary links to Complex I, the NADH:quinone oxidoreductase. Although the genetics, maturation, and some biochemistry of FHL are understood, the protein complex has never been isolated in an intact form to allow biochemical analysis. In this work, genetic tools are reported that allow the facile isolation of FHL in a single chromatographic step. The core complex is shown to comprise HycE (a [NiFe] hydrogenase component termed Hyd-3), FdhF (the molybdenum-dependent formate dehydrogenase-H), and three iron-sulfur proteins: HycB, HycF, and HycG. A proportion of this core complex remains associated with HycC and HycD, which are polytopic integral membrane proteins believed to anchor the core complex to the cytoplasmic side of the membrane. As isolated, the FHL complex retains formate hydrogenlyase activity in vitro. Protein film electrochemistry experiments on Hyd-3 demonstrate that it has a unique ability among [NiFe] hydrogenases to catalyze production of H2 even at high partial pressures of H2. Understanding and harnessing the activity of the FHL complex is critical to advancing future biohydrogen research efforts.
在厌氧条件下,大肠杆菌可进行混合酸发酵,最终产生分子氢。直接负责产氢的酶是膜结合型甲酸氢裂解酶(FHL)复合体,它将甲酸氧化与质子还原联系起来,并且在进化上与复合体I(NADH:醌氧化还原酶)相关。尽管人们已经了解FHL的遗传学、成熟过程以及一些生物化学性质,但该蛋白质复合体从未以完整形式分离出来用于生化分析。在这项研究中,报道了一些遗传工具,可通过单一色谱步骤轻松分离FHL。核心复合体显示由HycE(一种称为Hyd-3的[NiFe]氢化酶组分)、FdhF(钼依赖性甲酸脱氢酶-H)以及三种铁硫蛋白:HycB、HycF和HycG组成。该核心复合体的一部分仍与HycC和HycD相关联,HycC和HycD是多跨膜整合蛋白,被认为可将核心复合体锚定在膜的细胞质一侧。分离得到的FHL复合体在体外保留了甲酸氢裂解酶活性。对Hyd-3进行的蛋白质膜电化学实验表明了它在[NiFe]氢化酶中具有独特的能力,即使在高氢气分压下也能催化产生氢气。了解和利用FHL复合体的活性对于推进未来的生物氢研究工作至关重要。