Hütten Marion, Geukes Melanie, Misas-Villamil Johana C, van der Hoorn Renier A L, Grundler Florian M W, Siddique Shahid
Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany.
Plant Chemetics Lab, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany; Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany.
Plant Physiol Biochem. 2015 Dec;97:36-43. doi: 10.1016/j.plaphy.2015.09.008. Epub 2015 Sep 14.
Cyst nematodes are obligate, sedentary endoparasites with a highly specialised biology and a huge economic impact in agriculture. Successful parasitism involves morphological and physiological modifications of the host cells which lead to the formation of specialised syncytial feeding structures in roots. The development of the syncytium is aided by a cocktail of nematode effectors that manipulate the host plant activities in a complex network of interactions through post-translational modifications. Traditional transcriptomic and proteomic approaches cannot display this functional proteomic information. Activity-based protein profiling (ABPP) is a powerful technology that can be used to investigate the activity of the proteome through activity-based probes. To better understand the functional proteomics of syncytium, ABPP was conducted on syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Our results demonstrated that the activity of several enzymes is differentially regulated in the syncytium compared to the control roots. Among those specifically activated in the syncytium are a putative S-formyl-glutathione hydrolase (SFGH), a putative methylesterase (MES) and two unidentified enzymes. In contrast, the activities of vacuolar processing enzymes (VPEs) are specifically suppressed in the syncytium. Competition labelling, quantitative gene expression and T-DNA knock-out mutants were used to further characterise the roles of the differentially regulated enzymes during plant-nematode interaction. In conclusion, our study will open the door to generate a comprehensive and integrated view of the host-pathogen warfare that results in the formation of long-term feeding sites for pathogens.
胞囊线虫是专性的、定居性内寄生生物,具有高度特化的生物学特性,对农业有着巨大的经济影响。成功的寄生作用涉及宿主细胞的形态和生理改变,这会导致在根中形成特化的合胞体取食结构。线虫效应子混合物有助于合胞体的发育,这些效应子通过翻译后修饰在复杂的相互作用网络中操纵宿主植物的活动。传统的转录组学和蛋白质组学方法无法展示这种功能蛋白质组信息。基于活性的蛋白质谱分析(ABPP)是一种强大的技术,可用于通过基于活性的探针研究蛋白质组的活性。为了更好地理解合胞体的功能蛋白质组学,对拟南芥根中由甜菜胞囊线虫 Heterodera schachtii 诱导形成的合胞体进行了 ABPP 分析。我们的结果表明,与对照根相比,合胞体中几种酶的活性受到差异调节。在合胞体中特异性激活的酶包括一种假定的 S-甲酰谷胱甘肽水解酶(SFGH)、一种假定的甲基酯酶(MES)和两种未鉴定的酶。相反,液泡加工酶(VPEs)的活性在合胞体中受到特异性抑制。竞争标记、定量基因表达和 T-DNA 敲除突变体被用于进一步表征差异调节酶在植物-线虫相互作用中的作用。总之,我们的研究将为全面、综合地了解宿主-病原体对抗打开大门,这种对抗导致了病原体长期取食位点的形成。