Rathbun Stephen L, Shiffman Saul
Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georiga, U.S.A.
Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.
Biometrics. 2016 Mar;72(1):46-55. doi: 10.1111/biom.12416. Epub 2015 Sep 27.
Cigarette smoking is a prototypical example of a recurrent event. The pattern of recurrent smoking events may depend on time-varying covariates including mood and environmental variables. Fixed effects and frailty models for recurrent events data assume that smokers have a common association with time-varying covariates. We develop a mixed effects version of a recurrent events model that may be used to describe variation among smokers in how they respond to those covariates, potentially leading to the development of individual-based smoking cessation therapies. Our method extends the modified EM algorithm of Steele (1996) for generalized mixed models to recurrent events data with partially observed time-varying covariates. It is offered as an alternative to the method of Rizopoulos, Verbeke, and Lesaffre (2009) who extended Steele's (1996) algorithm to a joint-model for the recurrent events data and time-varying covariates. Our approach does not require a model for the time-varying covariates, but instead assumes that the time-varying covariates are sampled according to a Poisson point process with known intensity. Our methods are well suited to data collected using Ecological Momentary Assessment (EMA), a method of data collection widely used in the behavioral sciences to collect data on emotional state and recurrent events in the every-day environments of study subjects using electronic devices such as Personal Digital Assistants (PDA) or smart phones.
吸烟是复发事件的一个典型例子。复发吸烟事件的模式可能取决于随时间变化的协变量,包括情绪和环境变量。复发事件数据的固定效应模型和脆弱模型假定吸烟者与随时间变化的协变量存在共同关联。我们开发了一种复发事件模型的混合效应版本,可用于描述吸烟者在对这些协变量的反应方式上的差异,这可能会推动基于个体的戒烟疗法的发展。我们的方法将Steele(1996)用于广义混合模型的修正期望最大化(EM)算法扩展到具有部分观测到的随时间变化协变量的复发事件数据。它是Rizopoulos、Verbeke和Lesaffre(2009)方法的替代方案,后者将Steele(1996)的算法扩展为复发事件数据和随时间变化协变量的联合模型。我们的方法不需要随时间变化协变量的模型,而是假定随时间变化的协变量是根据具有已知强度的泊松点过程进行抽样的。我们的方法非常适合使用生态瞬时评估(EMA)收集的数据,EMA是行为科学中广泛使用的数据收集方法,用于通过个人数字助理(PDA)或智能手机等电子设备在研究对象的日常环境中收集有关情绪状态和复发事件的数据。