Suppr超能文献

基于异常值检测对数据非依赖采集液相色谱-串联质谱中碎片离子进行排序以改进无标记定量分析

Ranking Fragment Ions Based on Outlier Detection for Improved Label-Free Quantification in Data-Independent Acquisition LC-MS/MS.

作者信息

Bilbao Aivett, Zhang Ying, Varesio Emmanuel, Luban Jeremy, Strambio-De-Castillia Caterina, Lisacek Frédérique, Hopfgartner Gérard

机构信息

Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne , CH-1211 Geneva 4, Switzerland.

Proteome Informatics Group, SIB Swiss Institute of Bioinformatics , CH-1211 Geneva 4, Switzerland.

出版信息

J Proteome Res. 2015 Nov 6;14(11):4581-93. doi: 10.1021/acs.jproteome.5b00394. Epub 2015 Oct 14.

Abstract

Data-independent acquisition LC-MS/MS techniques complement supervised methods for peptide quantification. However, due to the wide precursor isolation windows, these techniques are prone to interference at the fragment ion level, which, in turn, is detrimental for accurate quantification. The nonoutlier fragment ion (NOFI) ranking algorithm has been developed to assign low priority to fragment ions affected by interference. By using the optimal subset of high-priority fragment ions, these interfered fragment ions are effectively excluded from quantification. NOFI represents each fragment ion as a vector of four dimensions related to chromatographic and MS fragmentation attributes and applies multivariate outlier detection techniques. Benchmarking conducted on a well-defined quantitative data set (i.e., the SWATH Gold Standard) indicates that NOFI on average is able to accurately quantify 11-25% more peptides than the commonly used Top-N library intensity ranking method. The sum of the area of the Top3-5 NOFIs produces similar coefficients of variation as compared to that with the library intensity method but with more accurate quantification results. On a biologically relevant human dendritic cell digest data set, NOFI properly assigns low-priority ranks to 85% of annotated interferences, resulting in sensitivity values between 0.92 and 0.80, against 0.76 for the Spectronaut interference detection algorithm.

摘要

数据非依赖型采集液相色谱-串联质谱(LC-MS/MS)技术是对肽段定量的监督方法的补充。然而,由于前体离子隔离窗口较宽,这些技术在碎片离子水平容易受到干扰,进而不利于准确的定量分析。非异常值碎片离子(NOFI)排序算法已被开发出来,用于将受干扰的碎片离子赋予低优先级。通过使用高优先级碎片离子的最佳子集,这些受干扰的碎片离子被有效地排除在定量分析之外。NOFI将每个碎片离子表示为与色谱和质谱碎片化属性相关的四维向量,并应用多变量异常值检测技术。在一个定义明确的定量数据集(即SWATH金标准数据集)上进行的基准测试表明,与常用的Top-N库强度排序方法相比,NOFI平均能够准确地多定量11%-25%的肽段。与库强度方法相比,Top3-5个NOFI的面积总和产生了相似的变异系数,但定量结果更准确。在一个具有生物学相关性的人类树突状细胞消化数据集上,NOFI将85%的注释干扰正确地赋予低优先级,灵敏度值在0.92至0.80之间,而Spectronaut干扰检测算法的灵敏度值为0.76。

相似文献

10
Improved Precursor Characterization for Data-Dependent Mass Spectrometry.改进数据依赖型质谱分析的前体特征描述。
Anal Chem. 2018 Feb 6;90(3):2333-2340. doi: 10.1021/acs.analchem.7b04808. Epub 2018 Jan 11.

引用本文的文献

本文引用的文献

9
Detection and correction of interference in SRM analysis.检测和校正 SRM 分析中的干扰。
Methods. 2013 Jun 15;61(3):299-303. doi: 10.1016/j.ymeth.2013.05.008. Epub 2013 May 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验