Su Hao, Shang Weijian, Cole Gregory, Li Gang, Harrington Kevin, Camilo Alexander, Tokuda Junichi, Tempany Clare M, Hata Nobuhiko, Fischer Gregory S
Philips Research North America, were with the Automation and Interventional Medicine (AIM) Robotics Lab, Department of Mechanical Engineering, Worcester Polytechnic Institute.
Automation and Interventional Medicine (AIM) Robotics Lab, Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
IEEE ASME Trans Mechatron. 2015 Aug;20(4):1920-1932. doi: 10.1109/TMECH.2014.2359413.
This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure.
本文介绍了一种在连续获取的实时磁共振成像(MRI)引导下用于经皮前列腺治疗的全驱动机器人系统。该系统由模块化硬件和软件组成,以支持术中MRI引导手术程序的手术工作流程。我们展示了一种用于经会阴前列腺干预的6自由度(DOF)针放置机器人的开发。该机器人由一个3自由度针驱动器模块和一个3自由度笛卡尔运动模块组成。针驱动器提供针套管平移和旋转(2自由度)以及探针平移(1自由度)。一个由多个压电电机驱动器组成的定制机器人控制器提供压电电机的精确闭环控制,并实现机器人运动和MR成像的同步。所开发的模块化机器人控制接口软件执行基于图像的配准、运动学计算,并通过开放网络通信协议OpenIGTLink的新实现,在导航软件和机器人控制器之间交换机器人命令和坐标。使用标准成像序列在3特斯拉MRI扫描仪内评估机器人的综合兼容性,信号噪声比(SNR)损失限制在15%以内。由于机器人的存在和运动导致的图像劣化显示出不可观察到的图像干扰。利用18号陶瓷针在明胶模型内进行25次靶向针放置,基于图像引导机器人针放置程序的MRI体积分割,在三维欧几里得距离上显示出0.87毫米的均方根(RMS)误差。