Suppr超能文献

一种用于磁共振成像引导下脑肿瘤精确适形消融的全驱动机器人辅助装置。

A Fully Actuated Robotic Assistant for MRI-Guided Precision Conformal Ablation of Brain Tumors.

作者信息

Li Gang, Patel Niravkumar A, Burdette Everette C, Pilitsis Julie G, Su Hao, Fischer Gregory S

机构信息

Automation and Interventional Medicine (AIM) Laboratory in the Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

Acoustic MedSystems Inc., Savoy, IL, USA.

出版信息

IEEE ASME Trans Mechatron. 2021;26(1):255-266. doi: 10.1109/tmech.2020.3012903. Epub 2020 Jul 29.

Abstract

This paper reports the development of a fully actuated robotic assistant for magnetic resonance imaging (MRI)-guided precision conformal ablation of brain tumors using an interstitial high intensity needle-based therapeutic ultrasound (NBTU) ablator probe. The robot is designed with an eight degree-of-freedom (DOF) remote center of motion (RCM) manipulator driven by piezoelectric actuators, five for aligning the ultrasound thermal ablator to the target lesions and three for inserting and orienting the ablator and its cannula to generate a desired ablation profile. The 8-DOF fully actuated robot can be operated in the scanner bore during imaging; thus, alleviating the need of moving the patient in or out of the scanner during the procedure, and therefore potentially reducing the procedure time and streamlining the workflow. The free space positioning accuracy of the system is evaluated with the OptiTrack motion capture system, demonstrating the root mean square (RMS) error of the tip position to be 1.11±0.43mm. The system targeting accuracy in MRI is assessed with phantom studies, indicating the RMS errors of the tip position to be 1.45±0.66mm and orientation to be 1.53±0.69°. The feasibility of the system to perform thermal ablation is validated through a preliminary ex-vivo tissue study with position error less than 4.3mm and orientation error less than 4.3°.

摘要

本文报道了一种全驱动机器人辅助设备的研发,该设备用于在磁共振成像(MRI)引导下,使用基于高强度针的组织间治疗超声(NBTU)消融探头对脑肿瘤进行精确适形消融。该机器人设计有一个由压电致动器驱动的八自由度(DOF)远程运动中心(RCM)操纵器,其中五个用于将超声热消融器对准目标病变,三个用于插入消融器及其套管并对其进行定向,以生成所需的消融轮廓。这个八自由度全驱动机器人可以在成像过程中在扫描仪孔内操作;因此,无需在手术过程中将患者移入或移出扫描仪,从而有可能减少手术时间并简化工作流程。使用OptiTrack运动捕捉系统评估了该系统的自由空间定位精度,结果表明尖端位置的均方根(RMS)误差为1.11±0.43mm。通过体模研究评估了该系统在MRI中的靶向精度,结果表明尖端位置的RMS误差为1.45±0.66mm,方向误差为1.53±0.69°。通过一项初步的离体组织研究验证了该系统进行热消融的可行性,其位置误差小于4.3mm,方向误差小于4.3°。

相似文献

1
A Fully Actuated Robotic Assistant for MRI-Guided Precision Conformal Ablation of Brain Tumors.
IEEE ASME Trans Mechatron. 2021;26(1):255-266. doi: 10.1109/tmech.2020.3012903. Epub 2020 Jul 29.
2
A Fully Actuated Body-Mounted Robotic Assistant for MRI-Guided Low Back Pain Injection.
IEEE Int Conf Robot Autom. 2020 May-Aug;2020. doi: 10.1109/icra40945.2020.9197534. Epub 2020 Sep 15.
3
Body-mounted robotic assistant for MRI-guided low back pain injection.
Int J Comput Assist Radiol Surg. 2020 Feb;15(2):321-331. doi: 10.1007/s11548-019-02080-3. Epub 2019 Oct 17.
4
Fully Actuated Body-Mounted Robotic System for MRI-Guided Lower Back Pain Injections: Initial Phantom and Cadaver Studies.
IEEE Robot Autom Lett. 2020 Oct;5(4):5245-5251. doi: 10.1109/lra.2020.3007459. Epub 2020 Jul 7.
5
Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy.
IEEE ASME Trans Mechatron. 2015 Aug;20(4):1920-1932. doi: 10.1109/TMECH.2014.2359413.
6
Robotic System for MRI-guided Focal Laser Ablation in the Prostate.
IEEE ASME Trans Mechatron. 2017 Feb;22(1):107-114. doi: 10.1109/TMECH.2016.2611570. Epub 2016 Sep 22.
7
Robot-assistant for MRI-guided liver ablation: A pilot study.
Med Phys. 2016 Oct;43(10):5347. doi: 10.1118/1.4961986.
8
An Integrated Robotic System for MRI-Guided Neuroablation: Preclinical Evaluation.
IEEE Trans Biomed Eng. 2020 Oct;67(10):2990-2999. doi: 10.1109/TBME.2020.2974583. Epub 2020 Feb 17.
9
A Concentric Tube Continuum Robot with Piezoelectric Actuation for MRI-Guided Closed-Loop Targeting.
Ann Biomed Eng. 2016 Oct;44(10):2863-2873. doi: 10.1007/s10439-016-1585-7. Epub 2016 Mar 16.

引用本文的文献

1
Hybrid pneumatic-hydraulic actuation for MRI-guided robotic stereotactic neurointervention.
Sci Adv. 2025 Sep 5;11(36):eady3624. doi: 10.1126/sciadv.ady3624. Epub 2025 Sep 3.
2
Biopiezoelectric-based nanomaterials; a promising strategy in cancer therapy.
J Exp Clin Cancer Res. 2025 Jun 4;44(1):171. doi: 10.1186/s13046-025-03427-2.
3
An MR-Safe Pneumatic Stepper Motor: Design, Control, and Characterization.
J Med Device. 2025 Mar 1;19(1):011007. doi: 10.1115/1.4067605. Epub 2025 Jan 28.
4
An MRI-guided stereotactic neurosurgical robotic system for semi-enclosed head coils.
J Robot Surg. 2024 Dec 30;19(1):35. doi: 10.1007/s11701-024-02195-z.
5
Advancements in Imaging and Neurosurgical Techniques for Brain Tumor Resection: A Comprehensive Review.
Cureus. 2024 Oct 31;16(10):e72745. doi: 10.7759/cureus.72745. eCollection 2024 Oct.
6
Towards a Robotically Steerable Laser Ablation Probe.
Int Symp Med Robot. 2024 Jun;2024. doi: 10.1109/ismr63436.2024.10586060. Epub 2024 Jul 12.
7
A deep unrolled neural network for real-time MRI-guided brain intervention.
Nat Commun. 2023 Dec 12;14(1):8257. doi: 10.1038/s41467-023-43966-w.
8
Review of Robot-Assisted HIFU Therapy.
Sensors (Basel). 2023 Apr 3;23(7):3707. doi: 10.3390/s23073707.
9
State of the Art and Future Opportunities in MRI-Guided Robot-Assisted Surgery and Interventions.
Proc IEEE Inst Electr Electron Eng. 2022 Jul;110(7):968-992. doi: 10.1109/jproc.2022.3169146. Epub 2022 May 3.

本文引用的文献

1
Design, Additive Manufacture, and Control of a Pneumatic, MR-Compatible Needle Driver.
IEEE Trans Robot. 2016 Feb;32(1):138-149. doi: 10.1109/TRO.2015.2504981. Epub 2016 Jan 19.
2
Characterization and Control of a Pneumatic Motor for MR-conditional Robotic Applications.
IEEE ASME Trans Mechatron. 2017 Dec;22(6):2780-2789. doi: 10.1109/TMECH.2017.2767906. Epub 2017 Nov 1.
3
MRI Robots for Needle-Based Interventions: Systems and Technology.
Ann Biomed Eng. 2018 Oct;46(10):1479-1497. doi: 10.1007/s10439-018-2075-x. Epub 2018 Jun 19.
4
Magnetic resonance-guided interstitial high-intensity focused ultrasound for brain tumor ablation.
Neurosurg Focus. 2018 Feb;44(2):E11. doi: 10.3171/2017.11.FOCUS17613.
5
Toward the Development of a Flexible Mesoscale MRI-compatible Neurosurgical Continuum Robot.
IEEE Trans Robot. 2017 Dec;33(6):1386-1397. doi: 10.1109/TRO.2017.2719035. Epub 2017 Jul 27.
6
Closed-loop asymmetric-tip needle steering under continuous intraoperative MRI guidance.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:4869-74. doi: 10.1109/EMBC.2015.7319484.
7
Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson's disease.
J Neurosurg. 2016 Apr;124(4):908-16. doi: 10.3171/2015.4.JNS15173. Epub 2015 Oct 23.
8
Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy.
IEEE ASME Trans Mechatron. 2015 Aug;20(4):1920-1932. doi: 10.1109/TMECH.2014.2359413.
10
Robotic system for MRI-guided stereotactic neurosurgery.
IEEE Trans Biomed Eng. 2015 Apr;62(4):1077-88. doi: 10.1109/TBME.2014.2367233.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验