Li Gang, Patel Niravkumar A, Burdette Everette C, Pilitsis Julie G, Su Hao, Fischer Gregory S
Automation and Interventional Medicine (AIM) Laboratory in the Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
Acoustic MedSystems Inc., Savoy, IL, USA.
IEEE ASME Trans Mechatron. 2021;26(1):255-266. doi: 10.1109/tmech.2020.3012903. Epub 2020 Jul 29.
This paper reports the development of a fully actuated robotic assistant for magnetic resonance imaging (MRI)-guided precision conformal ablation of brain tumors using an interstitial high intensity needle-based therapeutic ultrasound (NBTU) ablator probe. The robot is designed with an eight degree-of-freedom (DOF) remote center of motion (RCM) manipulator driven by piezoelectric actuators, five for aligning the ultrasound thermal ablator to the target lesions and three for inserting and orienting the ablator and its cannula to generate a desired ablation profile. The 8-DOF fully actuated robot can be operated in the scanner bore during imaging; thus, alleviating the need of moving the patient in or out of the scanner during the procedure, and therefore potentially reducing the procedure time and streamlining the workflow. The free space positioning accuracy of the system is evaluated with the OptiTrack motion capture system, demonstrating the root mean square (RMS) error of the tip position to be 1.11±0.43mm. The system targeting accuracy in MRI is assessed with phantom studies, indicating the RMS errors of the tip position to be 1.45±0.66mm and orientation to be 1.53±0.69°. The feasibility of the system to perform thermal ablation is validated through a preliminary ex-vivo tissue study with position error less than 4.3mm and orientation error less than 4.3°.
本文报道了一种全驱动机器人辅助设备的研发,该设备用于在磁共振成像(MRI)引导下,使用基于高强度针的组织间治疗超声(NBTU)消融探头对脑肿瘤进行精确适形消融。该机器人设计有一个由压电致动器驱动的八自由度(DOF)远程运动中心(RCM)操纵器,其中五个用于将超声热消融器对准目标病变,三个用于插入消融器及其套管并对其进行定向,以生成所需的消融轮廓。这个八自由度全驱动机器人可以在成像过程中在扫描仪孔内操作;因此,无需在手术过程中将患者移入或移出扫描仪,从而有可能减少手术时间并简化工作流程。使用OptiTrack运动捕捉系统评估了该系统的自由空间定位精度,结果表明尖端位置的均方根(RMS)误差为1.11±0.43mm。通过体模研究评估了该系统在MRI中的靶向精度,结果表明尖端位置的RMS误差为1.45±0.66mm,方向误差为1.53±0.69°。通过一项初步的离体组织研究验证了该系统进行热消融的可行性,其位置误差小于4.3mm,方向误差小于4.3°。