Suppr超能文献

随机子空间集成方法在 fMRI 分类中的应用。

Random subspace ensembles for FMRI classification.

机构信息

School of Computer Science, Bangor University, LL57 1UT Bangor, U.K.

出版信息

IEEE Trans Med Imaging. 2010 Feb;29(2):531-42. doi: 10.1109/TMI.2009.2037756.

Abstract

Classification of brain images obtained through functional magnetic resonance imaging (fMRI) poses a serious challenge to pattern recognition and machine learning due to the extremely large feature-to-instance ratio. This calls for revision and adaptation of the current state-of-the-art classification methods. We investigate the suitability of the random subspace (RS) ensemble method for fMRI classification. RS samples from the original feature set and builds one (base) classifier on each subset. The ensemble assigns a class label by either majority voting or averaging of output probabilities. Looking for guidelines for setting the two parameters of the method-ensemble size and feature sample size-we introduce three criteria calculated through these parameters: usability of the selected feature sets, coverage of the set of "important" features, and feature set diversity. Optimized together, these criteria work toward producing accurate and diverse individual classifiers. RS was tested on three fMRI datasets from single-subject experiments: the Haxby data (Haxby, 2001.) and two datasets collected in-house. We found that RS with support vector machines (SVM) as the base classifier outperformed single classifiers as well as some of the most widely used classifier ensembles such as bagging, AdaBoost, random forest, and rotation forest. The closest rivals were the single SVM and bagging of SVM classifiers. We use kappa-error diagrams to understand the success of RS.

摘要

基于功能磁共振成像(fMRI)的脑图像分类是模式识别和机器学习领域的一个重大挑战,这主要是由于特征与实例之间的比例极其悬殊。这就需要对当前的分类方法进行修正和改进。我们研究了随机子空间(RS)集成方法在 fMRI 分类中的适用性。RS 从原始特征集中进行抽样,并在每个子集上构建一个(基)分类器。集成通过多数投票或输出概率的平均值来分配类别标签。为了寻找设置该方法的两个参数(集成大小和特征抽样大小)的指导原则,我们引入了三个通过这些参数计算的标准:所选择特征集的可用性、“重要”特征集的覆盖范围以及特征集的多样性。这三个标准共同优化,有助于生成准确且多样的单个分类器。我们在三个来自单个体实验的 fMRI 数据集上测试了 RS:Haxby 数据集(Haxby,2001 年)和两个内部收集的数据集。我们发现,基于支持向量机(SVM)的 RS 作为基分类器,其性能优于单个分类器以及一些最广泛使用的分类器集成,如 bagging、AdaBoost、随机森林和旋转森林。最接近的竞争对手是单个 SVM 和 SVM 分类器的 bagging。我们使用 Kappa 误差图来理解 RS 的成功之处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验