Suppr超能文献

含微通道网络的三维打印结构的体内吻合与灌注

In Vivo Anastomosis and Perfusion of a Three-Dimensionally-Printed Construct Containing Microchannel Networks.

作者信息

Sooppan Renganaden, Paulsen Samantha J, Han Jason, Ta Anderson H, Dinh Patrick, Gaffey Ann C, Venkataraman Chantel, Trubelja Alen, Hung George, Miller Jordan S, Atluri Pavan

机构信息

1 Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.

2 Department of Bioengineering, George R. Brown School of Engineering, Rice University , Houston, Texas.

出版信息

Tissue Eng Part C Methods. 2016 Jan;22(1):1-7. doi: 10.1089/ten.TEC.2015.0239. Epub 2015 Dec 14.

Abstract

The field of tissue engineering has advanced the development of increasingly biocompatible materials to mimic the extracellular matrix of vascularized tissue. However, a majority of studies instead rely on a multiday inosculation between engineered vessels and host vasculature rather than the direct connection of engineered microvascular networks with host vasculature. We have previously demonstrated that the rapid casting of three-dimensionally-printed (3D) sacrificial carbohydrate glass is an expeditious and a reliable method of creating scaffolds with 3D microvessel networks. Here, we describe a new surgical technique to directly connect host femoral arteries to patterned microvessel networks. Vessel networks were connected in vivo in a rat femoral artery graft model. We utilized laser Doppler imaging to monitor hind limb ischemia for several hours after implantation and thus measured the vascular patency of implants that were anastomosed to the femoral artery. This study may provide a method to overcome the challenge of rapid oxygen and nutrient delivery to engineered vascularized tissues implanted in vivo.

摘要

组织工程领域已经推动了生物相容性日益提高的材料的开发,以模拟血管化组织的细胞外基质。然而,大多数研究反而依赖于工程血管与宿主脉管系统之间的多日吻合,而非工程微血管网络与宿主脉管系统的直接连接。我们之前已经证明,快速浇铸三维打印(3D)牺牲性碳水化合物玻璃是一种快速且可靠的创建具有3D微血管网络支架的方法。在此,我们描述一种将宿主股动脉直接连接至图案化微血管网络的新手术技术。在大鼠股动脉移植模型中,在体内连接血管网络。植入后,我们利用激光多普勒成像监测后肢缺血数小时,从而测量与股动脉吻合的植入物的血管通畅情况。本研究可能提供一种方法来克服向体内植入的工程血管化组织快速输送氧气和营养物质这一挑战。

相似文献

1
In Vivo Anastomosis and Perfusion of a Three-Dimensionally-Printed Construct Containing Microchannel Networks.
Tissue Eng Part C Methods. 2016 Jan;22(1):1-7. doi: 10.1089/ten.TEC.2015.0239. Epub 2015 Dec 14.
2
Hyperspectral imaging for monitoring of perfusion failure upon microvascular anastomosis in the rat hind limb.
Microvasc Res. 2018 Mar;116:64-70. doi: 10.1016/j.mvr.2017.10.005. Epub 2017 Nov 6.
3
Computational investigations of a new prosthetic femoral-popliteal bypass graft design.
J Vasc Surg. 2005 Dec;42(6):1169-75. doi: 10.1016/j.jvs.2005.08.016.
4
A study of neovascularization in the rat ischemic hindlimb using Araldite casting and Spalteholtz tissue clearing.
Cardiovasc Pathol. 2005 Nov-Dec;14(6):294-7. doi: 10.1016/j.carpath.2005.07.007.
7
Implantation of capillary structure engineered by optical lithography improves hind limb ischemia in mice.
Tissue Eng Part A. 2010 Mar;16(3):953-9. doi: 10.1089/ten.tea.2009.0097.
9
Modified T-Graft for Extracorporeal Membrane Oxygenation in a Patient with Small-Caliber Femoral Arteries.
Tex Heart Inst J. 2015 Dec 1;42(6):537-9. doi: 10.14503/THIJ-14-4728. eCollection 2015 Dec.

引用本文的文献

1
Sacrificial Templating for Accelerating Clinical Translation of Engineered Organs.
ACS Biomater Sci Eng. 2025 Jan 13;11(1):1-12. doi: 10.1021/acsbiomaterials.4c01824. Epub 2024 Dec 19.
2
Implantable 3D printed hydrogels with intrinsic channels for liver tissue engineering.
Proc Natl Acad Sci U S A. 2024 Nov 19;121(47):e2403322121. doi: 10.1073/pnas.2403322121. Epub 2024 Nov 12.
3
Improving the 3D Printability of Sugar Glass to Engineer Sacrificial Vascular Templates.
3D Print Addit Manuf. 2023 Oct 1;10(5):869-886. doi: 10.1089/3dp.2021.0147. Epub 2023 Oct 10.
4
Biodegradable Inks in Indirect Three-Dimensional Bioprinting for Tissue Vascularization.
Front Bioeng Biotechnol. 2022 Mar 25;10:856398. doi: 10.3389/fbioe.2022.856398. eCollection 2022.
5
In Vitro Strategies to Vascularize 3D Physiologically Relevant Models.
Adv Sci (Weinh). 2021 Oct;8(19):e2100798. doi: 10.1002/advs.202100798. Epub 2021 Aug 5.
6
Blood Flow Within Bioengineered 3D Printed Vascular Constructs Using the Porcine Model.
Front Cardiovasc Med. 2021 Jun 7;8:629313. doi: 10.3389/fcvm.2021.629313. eCollection 2021.
7
Current Challenges and Solutions to Tissue Engineering of Large-scale Cardiac Constructs.
Curr Cardiol Rep. 2021 Mar 17;23(5):47. doi: 10.1007/s11886-021-01474-7.
8
Bioprinting for the Biologist.
Cell. 2021 Jan 7;184(1):18-32. doi: 10.1016/j.cell.2020.12.002.
9
Bioprinting of artificial blood vessels.
Int J Bioprint. 2018 Jun 19;4(2):140. doi: 10.18063/IJB.v4i2.140. eCollection 2018.
10
Biomaterials for Bioprinting Microvasculature.
Chem Rev. 2020 Oct 14;120(19):10887-10949. doi: 10.1021/acs.chemrev.0c00027. Epub 2020 Sep 1.

本文引用的文献

1
Tissue vascularization through 3D printing: Will technology bring us flow?
Dev Dyn. 2015 May;244(5):629-40. doi: 10.1002/dvdy.24254. Epub 2015 Apr 21.
3
Building new hearts: a review of trends in cardiac tissue engineering.
Am J Transplant. 2014 Nov;14(11):2448-59. doi: 10.1111/ajt.12939. Epub 2014 Oct 7.
4
Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach.
Acta Biomater. 2015 Jan;11:449-58. doi: 10.1016/j.actbio.2014.09.035. Epub 2014 Sep 28.
5
Cardiac tissue slice transplantation as a model to assess tissue-engineered graft thickness, survival, and function.
Circulation. 2014 Sep 9;130(11 Suppl 1):S77-86. doi: 10.1161/CIRCULATIONAHA.113.007920.
6
Tissue-engineered, hydrogel-based endothelial progenitor cell therapy robustly revascularizes ischemic myocardium and preserves ventricular function.
J Thorac Cardiovasc Surg. 2014 Sep;148(3):1090-7; discussion 1097-8. doi: 10.1016/j.jtcvs.2014.06.038. Epub 2014 Jun 28.
7
Biomaterials in myocardial tissue engineering.
J Tissue Eng Regen Med. 2016 Jan;10(1):11-28. doi: 10.1002/term.1944. Epub 2014 Jul 28.
8
Liver cell therapy and tissue engineering for transplantation.
Semin Pediatr Surg. 2014 Jun;23(3):150-5. doi: 10.1053/j.sempedsurg.2014.05.001. Epub 2014 Jun 8.
9
The billion cell construct: will three-dimensional printing get us there?
PLoS Biol. 2014 Jun 17;12(6):e1001882. doi: 10.1371/journal.pbio.1001882. eCollection 2014 Jun.
10
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs.
Lab Chip. 2014 Jul 7;14(13):2202-11. doi: 10.1039/c4lc00030g. Epub 2014 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验