Suppr超能文献

使用猪模型对生物工程3D打印血管构建体中的血流情况进行研究。

Blood Flow Within Bioengineered 3D Printed Vascular Constructs Using the Porcine Model.

作者信息

Galván Nhu Thao N, Paulsen Samantha J, Kinstlinger Ian S, Marini Juan C, Didelija Inka C, Yoeli Dor, Grigoryan Bagrat, Miller Jordan S

机构信息

Department of Surgery, Baylor College of Medicine, Houston, TX, United States.

Department of Bioengineering, Rice University, Houston, TX, United States.

出版信息

Front Cardiovasc Med. 2021 Jun 7;8:629313. doi: 10.3389/fcvm.2021.629313. eCollection 2021.

Abstract

Recently developed biofabrication technologies are enabling the production of three-dimensional engineered tissues containing vascular networks which can deliver oxygen and nutrients across large tissue volumes. Tissues at this scale show promise for eventual regenerative medicine applications; however, the implantation and integration of these constructs remains poorly studied. Here, we introduce a surgical model for implantation and direct in-line vascular connection of 3D printed hydrogels in a porcine arteriovenous shunt configuration. Utilizing perfusable poly(ethylene glycol) diacrylate (PEGDA) hydrogels fabricated through projection stereolithography, we first optimized the implantation procedure in deceased piglets. Subsequently, we utilized the arteriovenous shunt model to evaluate blood flow through implanted PEGDA hydrogels in non-survivable studies. Connections between the host femoral artery and vein were robust and the patterned vascular channels withstood arterial pressure, permitting blood flow for 6 h. Our study demonstrates rapid prototyping of a biocompatible and perfusable hydrogel that can be implanted as a porcine arteriovenous shunt, suggesting a viable surgical approach for in-line implantation of bioprinted tissues, along with design considerations for future studies. We further envision that this surgical model may be broadly applicable for assessing whether biomaterials optimized for 3D printing and cell function can also withstand vascular cannulation and arterial blood pressure. This provides a crucial step toward generated transplantable engineered organs, demonstrating successful implantation of engineered tissues within host vasculature.

摘要

最近开发的生物制造技术能够生产包含血管网络的三维工程组织,这些血管网络可以在大体积组织中输送氧气和营养物质。这种规模的组织显示出在最终再生医学应用中的潜力;然而,这些构建体的植入和整合仍未得到充分研究。在这里,我们介绍一种手术模型,用于在猪动静脉分流配置中植入3D打印水凝胶并进行直接的在线血管连接。利用通过投影立体光刻制造的可灌注聚(乙二醇)二丙烯酸酯(PEGDA)水凝胶,我们首先在死亡仔猪中优化了植入程序。随后,我们利用动静脉分流模型在不可存活的研究中评估通过植入的PEGDA水凝胶的血流。宿主股动脉和静脉之间的连接牢固,有图案的血管通道能够承受动脉压力,允许血流持续6小时。我们的研究展示了一种生物相容性和可灌注水凝胶的快速原型制作,该水凝胶可以作为猪动静脉分流进行植入,这表明了一种可行的手术方法用于生物打印组织的在线植入,以及未来研究的设计考虑因素。我们进一步设想,这种手术模型可能广泛适用于评估为3D打印和细胞功能优化的生物材料是否也能承受血管插管和动脉血压。这为生成可移植的工程器官迈出了关键一步,证明了工程组织在宿主脉管系统内的成功植入。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68b7/8215112/dd760bf6019e/fcvm-08-629313-g0001.jpg

相似文献

1
Blood Flow Within Bioengineered 3D Printed Vascular Constructs Using the Porcine Model.
Front Cardiovasc Med. 2021 Jun 7;8:629313. doi: 10.3389/fcvm.2021.629313. eCollection 2021.
3
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs.
Lab Chip. 2014 Jul 7;14(13):2202-11. doi: 10.1039/c4lc00030g. Epub 2014 May 23.
4
Tissues with Patterned Vessels or Protein Release Induce Vascular Chemotaxis in an Platform.
Tissue Eng Part A. 2021 Oct;27(19-20):1290-1304. doi: 10.1089/ten.TEA.2020.0269. Epub 2021 Mar 2.
6
Biofabrication of 3D cell-encapsulated tubular constructs using dynamic optical projection stereolithography.
J Mater Sci Mater Med. 2019 Mar 6;30(3):36. doi: 10.1007/s10856-019-6239-5.
7
Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues.
Small. 2020 Apr;16(15):e1902838. doi: 10.1002/smll.201902838. Epub 2019 Sep 26.
8
9
Advancing bioinks for 3D bioprinting using reactive fillers: A review.
Acta Biomater. 2020 Sep 1;113:1-22. doi: 10.1016/j.actbio.2020.06.040. Epub 2020 Jul 2.
10
Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites.
Acta Biomater. 2020 Sep 1;113:339-349. doi: 10.1016/j.actbio.2020.06.012. Epub 2020 Jun 14.

引用本文的文献

1
Oxygenation and function of endocrine bioartificial pancreatic tissue constructs under flow for preclinical optimization.
J Tissue Eng. 2025 Jan 23;16:20417314241284826. doi: 10.1177/20417314241284826. eCollection 2025 Jan-Dec.
2
Bioengineering vascularization.
Development. 2024 Dec 1;151(23). doi: 10.1242/dev.204455. Epub 2024 Nov 29.
3
Implantable 3D printed hydrogels with intrinsic channels for liver tissue engineering.
Proc Natl Acad Sci U S A. 2024 Nov 19;121(47):e2403322121. doi: 10.1073/pnas.2403322121. Epub 2024 Nov 12.
4
Bioprinting of Perfusable, Biocompatible Vessel-like Channels with dECM-Based Bioinks and Living Cells.
Bioengineering (Basel). 2024 Apr 29;11(5):439. doi: 10.3390/bioengineering11050439.
5
Current Biomedical Applications of 3D-Printed Hydrogels.
Gels. 2023 Dec 21;10(1):8. doi: 10.3390/gels10010008.
6
Improving the 3D Printability of Sugar Glass to Engineer Sacrificial Vascular Templates.
3D Print Addit Manuf. 2023 Oct 1;10(5):869-886. doi: 10.1089/3dp.2021.0147. Epub 2023 Oct 10.

本文引用的文献

1
Fast Stereolithography Printing of Large-Scale Biocompatible Hydrogel Models.
Adv Healthc Mater. 2021 May;10(10):e2002103. doi: 10.1002/adhm.202002103. Epub 2021 Feb 15.
2
Bioengineered human blood vessels.
Science. 2020 Oct 9;370(6513). doi: 10.1126/science.aaw8682.
3
Generation of model tissues with dendritic vascular networks via sacrificial laser-sintered carbohydrate templates.
Nat Biomed Eng. 2020 Sep;4(9):916-932. doi: 10.1038/s41551-020-0566-1. Epub 2020 Jun 29.
4
Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels.
Sci Adv. 2019 Sep 6;5(9):eaaw2459. doi: 10.1126/sciadv.aaw2459. eCollection 2019 Sep.
5
3D bioprinting of collagen to rebuild components of the human heart.
Science. 2019 Aug 2;365(6452):482-487. doi: 10.1126/science.aav9051.
6
Multivascular networks and functional intravascular topologies within biocompatible hydrogels.
Science. 2019 May 3;364(6439):458-464. doi: 10.1126/science.aav9750.
7
Microfabrication of AngioChip, a biodegradable polymer scaffold with microfluidic vasculature.
Nat Protoc. 2018 Aug;13(8):1793-1813. doi: 10.1038/s41596-018-0015-8.
8
Improving Surgical Methods for Studying Vascular Grafts in Animal Models.
Tissue Eng Part C Methods. 2018 Aug;24(8):457-464. doi: 10.1089/ten.TEC.2018.0099.
9
Anti-fouling strategies for central venous catheters.
Cardiovasc Diagn Ther. 2017 Dec;7(Suppl 3):S246-S257. doi: 10.21037/cdt.2017.09.18.
10
3D-printed fluidic networks as vasculature for engineered tissue.
Lab Chip. 2016 May 24;16(11):2025-43. doi: 10.1039/c6lc00193a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验