Romero Juan Manuel, Martin Mariano, Ramirez Claudia Lilián, Dumas Victoria Gisel, Marti Marcelo Adrián
Instituto de Química Física de los Materiales Medio Ambiente y Energía (INQUIMAE), UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
Adv Protein Chem Struct Biol. 2015;100:33-65. doi: 10.1016/bs.apcsb.2015.06.006. Epub 2015 Jul 15.
Determination of the free energy profile for an enzyme reaction mechanism is of primordial relevance, paving the way for our understanding of the enzyme's catalytic power at the molecular level. Although hybrid, mostly DFT-based, QM/MM methods have been extensively applied to this type of studies, achieving accurate and statistically converged results at a moderate computational cost is still an open challenge. Recently, we have shown that accurate results can be achieved in less computational time, combining Jarzynski's relationship with a hybrid differential relaxation algorithm (HyDRA), which allows partial relaxation of the solvent during the nonequilibrium steering of the reaction. In this work, we have applied this strategy to study two mycobacterial zinc hydrolases. Mycobacterium tuberculosis infections are still a worldwide problem and thus characterization and validation of new drug targets is an intense field of research. Among possible drug targets, recently two essential zinc hydrolases, MshB (Rv1170) and MA-amidase (Rv3717), have been proposed and structurally characterized. Although possible mechanisms have been proposed by analogy to the widely studied human Zn hydrolases, several key issues, particularly those related to Zn coordination sphere and its role in catalysis, remained unanswered. Our results show that mycobacterial Zn hydrolases share a basic two-step mechanism. First, the attacking water becomes deprotonated by the conserved base and establishes the new C-O bond leading to a tetrahedral intermediate. The intermediate requires moderate reorganization to allow for proton transfer to the amide N and C-N bond breaking to occur in the second step. Zn ion plays a key role in stabilizing the tetrahedral intermediate and balancing the negative charge of the substrate during hydroxide ion attack. Finally, comparative analysis of other Zn hydrolases points to a convergent mechanistic evolution.
确定酶反应机制的自由能分布至关重要,为我们在分子水平上理解酶的催化能力铺平了道路。尽管混合的、主要基于密度泛函理论(DFT)的量子力学/分子力学(QM/MM)方法已广泛应用于这类研究,但以适度的计算成本获得准确且统计收敛的结果仍是一个悬而未决的挑战。最近,我们表明,通过将雅尔津斯基关系与混合微分弛豫算法(HyDRA)相结合,可以在更短的计算时间内获得准确结果,该算法允许在反应的非平衡操纵过程中对溶剂进行部分弛豫。在这项工作中,我们应用此策略研究了两种分枝杆菌锌水解酶。结核分枝杆菌感染仍是一个全球性问题,因此新药靶点的表征和验证是一个活跃的研究领域。在可能的药物靶点中,最近有人提出并对两种必需的锌水解酶MshB(Rv1170)和MA-酰胺酶(Rv3717)进行了结构表征。尽管已通过类比广泛研究的人类锌水解酶提出了可能的机制,但几个关键问题,特别是那些与锌配位球及其在催化中的作用相关的问题,仍未得到解答。我们的结果表明,分枝杆菌锌水解酶具有基本的两步机制。首先,进攻水被保守碱基去质子化,并形成新的C-O键,导致四面体中间体。中间体需要适度的重排,以便在第二步中发生质子转移到酰胺N和C-N键断裂。锌离子在稳定四面体中间体和在氢氧根离子攻击期间平衡底物的负电荷方面起关键作用。最后,对其他锌水解酶的比较分析表明存在趋同的机制进化。