Díaz-González Esteban E, Kautz Tiffany F, Dorantes-Delgado Alicia, Malo-García Iliana R, Laguna-Aguilar Maricela, Langsjoen Rose M, Chen Rubing, Auguste Dawn I, Sánchez-Casas Rosa M, Danis-Lozano Rogelio, Weaver Scott C, Fernández-Salas Ildefonso
Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nuevo Leon, Mexico; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas; Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Chiapas, Mexico; Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Nuevo Leon, Mexico; Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Nuevo Leon, Mexico.
Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nuevo Leon, Mexico; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas; Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Chiapas, Mexico; Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Nuevo Leon, Mexico; Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Nuevo Leon, Mexico
Am J Trop Med Hyg. 2015 Dec;93(6):1325-9. doi: 10.4269/ajtmh.15-0450. Epub 2015 Sep 28.
During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)-positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown.
2014年末墨西哥恰帕斯州基孔肯雅热疫情爆发期间,开展了昆虫病毒学监测以确定病媒。在各社区,对75户疑似病例家庭进行了蚊虫采样,其中80%(60户)有埃及伊蚊,2.7%(2户)有白纹伊蚊。共采集到1170只埃及伊蚊和3只白纹伊蚊,并形成了81个样本池。虽然白纹伊蚊样本池中均未检测出基孔肯雅病毒(CHIKV)呈阳性,但18个埃及伊蚊样本池(22.8%)含有CHIKV,蚊虫感染率为32.3/1000。该地区缺乏群体免疫,蚊虫数量众多,病媒控制服务不佳,以及在人类病例所在地进行针对性采集,可能是导致该蚊种感染率高的原因。与实验研究的预测结果一致,埃及伊蚊似乎是墨西哥南部CHIKV的主要病媒,而白纹伊蚊的作用尚不清楚。