Yi Changyu, Yao Kaiqian, Cai Shuyu, Li Huizi, Zhou Jie, Xia Xiaojian, Shi Kai, Yu Jingquan, Foyer Christine Helen, Zhou Yanhong
Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China.
Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China.
J Exp Bot. 2015 Dec;66(22):7391-404. doi: 10.1093/jxb/erv435. Epub 2015 Sep 28.
Plants acclimate rapidly to stressful environmental conditions. Increasing atmospheric CO2 levels are predicted to influence tolerance to stresses such as soil salinity but the mechanisms are poorly understood. To resolve this issue, tomato (Solanum lycopersicum) plants were grown under ambient (380 μmol mol(-1)) or high (760 μmol mol(-1)) CO2 in the absence or presence of sodium chloride (100mM). The higher atmospheric CO2 level induced the expression of RESPIRATORY BURST OXIDASE 1 (SlRBOH1) and enhanced H2O2 accumulation in the vascular cells of roots, stems, leaf petioles, and the leaf apoplast. Plants grown with higher CO2 levels showed improved salt tolerance, together with decreased leaf transpiration rates and lower sodium concentrations in the xylem sap, vascular tissues, and leaves. Silencing SlRBOH1 abolished high CO2 -induced salt tolerance and increased leaf transpiration rates, as well as enhancing Na(+) accumulation in the plants. The higher atmospheric CO2 level increased the abundance of a subset of transcripts involved in Na(+) homeostasis in the controls but not in the SlRBOH1-silenced plants. It is concluded that high atmospheric CO2 concentrations increase salt stress tolerance in an apoplastic H2O2 dependent manner, by suppressing transpiration and hence Na(+) delivery from the roots to the shoots, leading to decreased leaf Na(+) accumulation.
植物能迅速适应恶劣的环境条件。预计大气中二氧化碳水平的升高会影响植物对土壤盐分等胁迫的耐受性,但其机制尚不清楚。为了解决这个问题,将番茄(Solanum lycopersicum)植株种植在环境二氧化碳浓度(380 μmol mol⁻¹)或高二氧化碳浓度(760 μmol mol⁻¹)下,有无氯化钠(100 mM)处理。较高的大气二氧化碳水平诱导了呼吸爆发氧化酶1(SlRBOH1)的表达,并增强了根、茎、叶柄和叶质外体维管束细胞中过氧化氢的积累。在较高二氧化碳水平下生长的植株表现出耐盐性提高,同时叶片蒸腾速率降低,木质部汁液、维管组织和叶片中的钠浓度降低。沉默SlRBOH1消除了高二氧化碳诱导的耐盐性,提高了叶片蒸腾速率,并增强了植株中钠的积累。较高的大气二氧化碳水平增加了对照中参与钠稳态的一部分转录本的丰度,但在沉默SlRBOH1的植株中没有增加。研究得出结论,高浓度大气二氧化碳通过抑制蒸腾作用,从而减少从根到地上部的钠运输,导致叶片钠积累减少,以依赖质外体过氧化氢的方式提高盐胁迫耐受性。