Suppr超能文献

微小 RNA MIR21 和结直肠癌中的 T 细胞。

MicroRNA MIR21 and T Cells in Colorectal Cancer.

机构信息

Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.

Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts. Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts. Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

出版信息

Cancer Immunol Res. 2016 Jan;4(1):33-40. doi: 10.1158/2326-6066.CIR-15-0084. Epub 2015 Sep 29.

Abstract

The complex interactions between colorectal neoplasia and immune cells in the tumor microenvironment remain to be elucidated. Experimental evidence suggests that microRNA MIR21 (miR-21) suppresses antitumor T-cell-mediated immunity. Thus, we hypothesized that tumor MIR21 expression might be inversely associated with T-cell density in colorectal carcinoma tissue. Using 538 rectal and colon cancer cases from the Nurses' Health Study and the Health Professionals Follow-up Study, we measured tumor MIR21 expression by a quantitative reverse-transcription PCR assay. Densities of CD3(+), CD8(+), CD45RO (PTPRC)(+), and FOXP3(+) cells in tumor tissue were determined by tissue microarray immunohistochemistry and computer-assisted image analysis. Ordinal logistic regression analysis was conducted to assess the association of MIR21 expression (ordinal quartiles as a predictor variable) with T-cell density (ordinal quartiles as an outcome variable), adjusting for tumor molecular features, including microsatellite instability; CpG island methylator phenotype; KRAS, BRAF, and PIK3CA mutations; and LINE-1 methylation. We adjusted the two-sided α level to 0.012 for multiple hypothesis testing. Tumor MIR21 expression was inversely associated with densities of CD3(+) and CD45RO(+) cells (Ptrend < 0.0005). The multivariate odds ratio of the highest versus lowest quartile of MIR21 for a unit increase in quartile categories of CD3(+) or CD45RO(+) cells was 0.44 [95% confidence interval (CI), 0.28 to 0.68] or 0.41 (95% CI, 0.26-0.64), respectively. Our data support a possible role of tumor epigenetic deregulation by noncoding RNA in suppressing the antitumor T-cell-mediated adaptive immune response and suggest MIR21 as a potential target for immunotherapy and prevention in colorectal cancer.

摘要

结直肠肿瘤与肿瘤微环境中免疫细胞的复杂相互作用仍有待阐明。实验证据表明,微小 RNA MIR21(miR-21)抑制抗肿瘤 T 细胞介导的免疫。因此,我们假设肿瘤 MIR21 表达可能与结直肠癌组织中的 T 细胞密度呈负相关。我们使用来自护士健康研究和健康专业人员随访研究的 538 例直肠和结肠癌病例,通过定量逆转录 PCR 测定测量肿瘤 MIR21 表达。通过组织微阵列免疫组织化学和计算机辅助图像分析测定肿瘤组织中 CD3(+)、CD8(+)、CD45RO(PTPRC)(+)和 FOXP3(+)细胞的密度。采用有序逻辑回归分析评估 MIR21 表达(有序四分位数作为预测变量)与 T 细胞密度(有序四分位数作为结果变量)之间的关联,调整肿瘤分子特征,包括微卫星不稳定性;CpG 岛甲基化表型;KRAS、BRAF 和 PIK3CA 突变;和 LINE-1 甲基化。我们将双侧 α 水平调整为 0.012 以进行多重假设检验。肿瘤 MIR21 表达与 CD3(+)和 CD45RO(+)细胞密度呈负相关(Ptrend <0.0005)。MIR21 最高四分位数与最低四分位数相比,CD3(+)或 CD45RO(+)细胞四分位类别每增加一个单位的多变量比值比分别为 0.44(95%CI,0.28 至 0.68)或 0.41(95%CI,0.26 至 0.64)。我们的数据支持非编码 RNA 通过肿瘤表观遗传失调在抑制抗肿瘤 T 细胞介导的适应性免疫反应中的可能作用,并表明 MIR21 可能成为结直肠癌免疫治疗和预防的潜在靶点。

相似文献

1
MicroRNA MIR21 and T Cells in Colorectal Cancer.
Cancer Immunol Res. 2016 Jan;4(1):33-40. doi: 10.1158/2326-6066.CIR-15-0084. Epub 2015 Sep 29.
2
Fusobacterium nucleatum and T Cells in Colorectal Carcinoma.
JAMA Oncol. 2015 Aug;1(5):653-61. doi: 10.1001/jamaoncol.2015.1377.
3
MicroRNA let-7, T Cells, and Patient Survival in Colorectal Cancer.
Cancer Immunol Res. 2016 Nov;4(11):927-935. doi: 10.1158/2326-6066.CIR-16-0112. Epub 2016 Oct 13.
4
MicroRNA MIR21 (miR-21) and PTGS2 Expression in Colorectal Cancer and Patient Survival.
Clin Cancer Res. 2016 Aug 1;22(15):3841-8. doi: 10.1158/1078-0432.CCR-15-2173. Epub 2016 Mar 8.
5
Tumour CD274 (PD-L1) expression and T cells in colorectal cancer.
Gut. 2017 Aug;66(8):1463-1473. doi: 10.1136/gutjnl-2016-311421. Epub 2016 May 5.
6
Tumor SQSTM1 (p62) expression and T cells in colorectal cancer.
Oncoimmunology. 2017 Jan 31;6(3):e1284720. doi: 10.1080/2162402X.2017.1284720. eCollection 2017.
7
in Colorectal Cancer Relates to Immune Response Differentially by Tumor Microsatellite Instability Status.
Cancer Immunol Res. 2018 Nov;6(11):1327-1336. doi: 10.1158/2326-6066.CIR-18-0174. Epub 2018 Sep 18.
8
Smoking and Risk of Colorectal Cancer Sub-Classified by Tumor-Infiltrating T Cells.
J Natl Cancer Inst. 2019 Jan 1;111(1):42-51. doi: 10.1093/jnci/djy137.
10
Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer.
World J Gastroenterol. 2016 Jan 14;22(2):557-66. doi: 10.3748/wjg.v22.i2.557.

引用本文的文献

2
Regulatory role of exosomes in colorectal cancer progression and potential as biomarkers.
Cancer Biol Med. 2023 Aug 8;20(8):575-98. doi: 10.20892/j.issn.2095-3941.2023.0119.
3
Intratumour Fusobacterium nucleatum and immune response to oesophageal cancer.
Br J Cancer. 2023 Apr;128(6):1155-1165. doi: 10.1038/s41416-022-02112-x. Epub 2023 Jan 4.
5
MicroRNA-21 is immunosuppressive and pro-metastatic via separate mechanisms.
Oncogenesis. 2022 Jul 11;11(1):38. doi: 10.1038/s41389-022-00413-7.
6
Pan-Cancer Analysis Predicts the Immunological and Prognostic Role of ZC3H12C in KIRC.
Biomed Res Int. 2022 Jun 26;2022:4541571. doi: 10.1155/2022/4541571. eCollection 2022.
7
Brief report: Lymph node morphology in stage II colorectal cancer.
PLoS One. 2021 Mar 29;16(3):e0249197. doi: 10.1371/journal.pone.0249197. eCollection 2021.
8
Noncoding RNAs in cancer immunity: functions, regulatory mechanisms, and clinical application.
Mol Cancer. 2020 Mar 2;19(1):48. doi: 10.1186/s12943-020-01154-0.
9
Mucosal cancer-associated microbes and anastomotic leakage after resection of colorectal carcinoma.
Surg Oncol. 2020 Mar;32:63-68. doi: 10.1016/j.suronc.2019.11.005. Epub 2019 Nov 18.

本文引用的文献

1
PD-1 Blockade in Tumors with Mismatch-Repair Deficiency.
N Engl J Med. 2015 Jun 25;372(26):2509-20. doi: 10.1056/NEJMoa1500596. Epub 2015 May 30.
2
The future of immune checkpoint therapy.
Science. 2015 Apr 3;348(6230):56-61. doi: 10.1126/science.aaa8172.
4
Plasma 25-hydroxyvitamin D and colorectal cancer risk according to tumour immunity status.
Gut. 2016 Feb;65(2):296-304. doi: 10.1136/gutjnl-2014-308852. Epub 2015 Jan 15.
5
Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients.
Nature. 2014 Nov 27;515(7528):563-7. doi: 10.1038/nature14011.
6
Genetic basis for clinical response to CTLA-4 blockade in melanoma.
N Engl J Med. 2014 Dec 4;371(23):2189-2199. doi: 10.1056/NEJMoa1406498. Epub 2014 Nov 19.
7
The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints.
Cancer Discov. 2015 Jan;5(1):43-51. doi: 10.1158/2159-8290.CD-14-0863. Epub 2014 Oct 30.
8
Phase II study of personalized peptide vaccination for previously treated advanced colorectal cancer.
Cancer Immunol Res. 2014 Dec;2(12):1154-62. doi: 10.1158/2326-6066.CIR-14-0035. Epub 2014 Oct 28.
9
Regulation of microRNA biogenesis.
Nat Rev Mol Cell Biol. 2014 Aug;15(8):509-24. doi: 10.1038/nrm3838. Epub 2014 Jul 16.
10
Therapeutic targeting of microRNAs: current status and future challenges.
Nat Rev Drug Discov. 2014 Aug;13(8):622-38. doi: 10.1038/nrd4359. Epub 2014 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验