Lewandowski Sara L, Janardhan Harish P, Trivedi Chinmay M
Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
J Biol Chem. 2015 Nov 6;290(45):27067-27089. doi: 10.1074/jbc.M115.684753. Epub 2015 Sep 29.
About two-thirds of human congenital heart disease involves second heart field-derived structures. Histone-modifying enzymes, histone deacetylases (HDACs), regulate the epigenome; however, their functions within the second heart field remain elusive. Here we demonstrate that histone deacetylase 3 (HDAC3) orchestrates epigenetic silencing of Tgf-β1, a causative factor in congenital heart disease pathogenesis, in a deacetylase-independent manner to regulate development of second heart field-derived structures. In murine embryos lacking HDAC3 in the second heart field, increased TGF-β1 bioavailability is associated with ascending aortic dilatation, outflow tract malrotation, overriding aorta, double outlet right ventricle, aberrant semilunar valve development, bicuspid aortic valve, ventricular septal defects, and embryonic lethality. Activation of TGF-β signaling causes aberrant endothelial-to-mesenchymal transition and altered extracellular matrix homeostasis in HDAC3-null outflow tracts and semilunar valves, and pharmacological inhibition of TGF-β rescues these defects. HDAC3 recruits components of the PRC2 complex, methyltransferase EZH2, EED, and SUZ12, to the NCOR complex to enrich trimethylation of Lys-27 on histone H3 at the Tgf-β1 regulatory region and thereby maintains epigenetic silencing of Tgf-β1 specifically within the second heart field-derived mesenchyme. Wild-type HDAC3 or catalytically inactive HDAC3 expression rescues aberrant endothelial-to-mesenchymal transition and epigenetic silencing of Tgf-β1 in HDAC3-null outflow tracts and semilunar valves. These findings reveal that epigenetic dysregulation within the second heart field is a predisposing factor for congenital heart disease.
约三分之二的人类先天性心脏病涉及第二心脏场衍生结构。组蛋白修饰酶,即组蛋白去乙酰化酶(HDACs),可调节表观基因组;然而,它们在第二心脏场中的功能仍不清楚。在此,我们证明组蛋白去乙酰化酶3(HDAC3)以一种不依赖去乙酰化酶的方式协调先天性心脏病发病机制中的致病因素Tgf-β1的表观遗传沉默,以调节第二心脏场衍生结构的发育。在第二心脏场缺乏HDAC3的小鼠胚胎中,TGF-β1生物利用度的增加与升主动脉扩张、流出道旋转不良、主动脉骑跨、右心室双出口、半月瓣发育异常、二叶主动脉瓣、室间隔缺损和胚胎致死有关。TGF-β信号的激活导致HDAC3缺失的流出道和半月瓣中异常的内皮-间充质转化和细胞外基质稳态改变,而TGF-β的药理抑制可挽救这些缺陷。HDAC3将PRC2复合物的成分、甲基转移酶EZH2、EED和SUZ12募集到NCOR复合物中,以富集Tgf-β1调节区域组蛋白H3上赖氨酸-27的三甲基化,从而维持Tgf-β1在第二心脏场衍生间充质中的特异性表观遗传沉默。野生型HDAC3或催化失活的HDAC3表达可挽救HDAC3缺失的流出道和半月瓣中异常的内皮-间充质转化和Tgf-β1的表观遗传沉默。这些发现揭示了第二心脏场内的表观遗传失调是先天性心脏病的一个易感因素。