Suppr超能文献

基于微阵列数据的基因调控网络参数估计:酿酒酵母中的冷休克反应

Parameter Estimation for Gene Regulatory Networks from Microarray Data: Cold Shock Response in Saccharomyces cerevisiae.

作者信息

Dahlquist Kam D, Fitzpatrick Ben G, Camacho Erika T, Entzminger Stephanie D, Wanner Nathan C

机构信息

Department of Biology, Loyola Marymount University, 1 LMU Drive, MS 8888, Los Angeles, CA, 90045, USA.

Department of Mathematics, Loyola Marymount University, 1 LMU Drive, UH 2700, Los Angeles, CA, 90045, USA.

出版信息

Bull Math Biol. 2015 Aug;77(8):1457-92. doi: 10.1007/s11538-015-0092-6. Epub 2015 Sep 29.

Abstract

We investigated the dynamics of a gene regulatory network controlling the cold shock response in budding yeast, Saccharomyces cerevisiae. The medium-scale network, derived from published genome-wide location data, consists of 21 transcription factors that regulate one another through 31 directed edges. The expression levels of the individual transcription factors were modeled using mass balance ordinary differential equations with a sigmoidal production function. Each equation includes a production rate, a degradation rate, weights that denote the magnitude and type of influence of the connected transcription factors (activation or repression), and a threshold of expression. The inverse problem of determining model parameters from observed data is our primary interest. We fit the differential equation model to published microarray data using a penalized nonlinear least squares approach. Model predictions fit the experimental data well, within the 95% confidence interval. Tests of the model using randomized initial guesses and model-generated data also lend confidence to the fit. The results have revealed activation and repression relationships between the transcription factors. Sensitivity analysis indicates that the model is most sensitive to changes in the production rate parameters, weights, and thresholds of Yap1, Rox1, and Yap6, which form a densely connected core in the network. The modeling results newly suggest that Rap1, Fhl1, Msn4, Rph1, and Hsf1 play an important role in regulating the early response to cold shock in yeast. Our results demonstrate that estimation for a large number of parameters can be successfully performed for nonlinear dynamic gene regulatory networks using sparse, noisy microarray data.

摘要

我们研究了控制出芽酵母(酿酒酵母)冷休克反应的基因调控网络的动力学。这个中等规模的网络源自已发表的全基因组定位数据,由21个转录因子组成,它们通过31条有向边相互调控。使用具有S型生产函数的质量平衡常微分方程对各个转录因子的表达水平进行建模。每个方程都包括一个生产率、一个降解率、表示相连转录因子影响的大小和类型(激活或抑制)的权重,以及一个表达阈值。从观测数据确定模型参数的反问题是我们的主要研究兴趣。我们使用惩罚非线性最小二乘法将微分方程模型拟合到已发表的微阵列数据。在95%置信区间内,模型预测与实验数据拟合良好。使用随机初始猜测和模型生成数据对模型进行的测试也增强了对拟合的信心。结果揭示了转录因子之间的激活和抑制关系。敏感性分析表明,该模型对Yap1、Rox1和Yap6的生产率参数、权重和阈值的变化最为敏感,它们在网络中形成了一个紧密连接的核心。建模结果新表明,Rap1、Fhl1、Msn4、Rph1和Hsf1在调节酵母对冷休克的早期反应中起重要作用。我们的结果表明,使用稀疏、有噪声的微阵列数据,可以成功地对非线性动态基因调控网络进行大量参数的估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8465/4636536/8487726be881/11538_2015_92_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验