Suppr超能文献

基于增强型概率神经网络的帕金森病计算机辅助诊断。

Computer-Aided Diagnosis of Parkinson's Disease Using Enhanced Probabilistic Neural Network.

机构信息

Neuroscience Graduate Program and Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH, USA.

Departments of Biomedical Engineering, Biomedical Informatics, Neurology, Neuroscience, Electrical and Computer Engineering, Civil, Environmental, and Geodetic Engineering, and Biophysics Graduate Program, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, 43210, USA.

出版信息

J Med Syst. 2015 Nov;39(11):179. doi: 10.1007/s10916-015-0353-9. Epub 2015 Sep 29.

Abstract

Early and accurate diagnosis of Parkinson's disease (PD) remains challenging. Neuropathological studies using brain bank specimens have estimated that a large percentages of clinical diagnoses of PD may be incorrect especially in the early stages. In this paper, a comprehensive computer model is presented for the diagnosis of PD based on motor, non-motor, and neuroimaging features using the recently-developed enhanced probabilistic neural network (EPNN). The model is tested for differentiating PD patients from those with scans without evidence of dopaminergic deficit (SWEDDs) using the Parkinson's Progression Markers Initiative (PPMI) database, an observational, multi-center study designed to identify PD biomarkers for diagnosis and disease progression. The results are compared to four other commonly-used machine learning algorithms: the probabilistic neural network (PNN), support vector machine (SVM), k-nearest neighbors (k-NN) algorithm, and classification tree (CT). The EPNN had the highest classification accuracy at 92.5% followed by the PNN (91.6%), k-NN (90.8%) and CT (90.2%). The EPNN exhibited an accuracy of 98.6% when classifying healthy control (HC) versus PD, higher than any previous studies.

摘要

早期、准确地诊断帕金森病(PD)仍然具有挑战性。利用脑库标本进行的神经病理学研究估计,很大比例的临床 PD 诊断可能是不正确的,尤其是在早期阶段。在本文中,提出了一种基于运动、非运动和神经影像学特征的综合计算机模型,使用最近开发的增强概率神经网络(EPNN)来诊断 PD。该模型使用帕金森进展标志物倡议(PPMI)数据库进行了测试,该数据库是一项观察性、多中心研究,旨在为诊断和疾病进展确定 PD 生物标志物。结果与其他四种常用的机器学习算法进行了比较:概率神经网络(PNN)、支持向量机(SVM)、k-最近邻(k-NN)算法和分类树(CT)。EPNN 的分类准确率最高,为 92.5%,其次是 PNN(91.6%)、k-NN(90.8%)和 CT(90.2%)。EPNN 在将健康对照组(HC)与 PD 进行分类时的准确率为 98.6%,高于以往的任何研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验