Suppr超能文献

用于区分帕金森病患者与无多巴胺能缺陷证据受试者的项目反应模型和人工神经网络

Item Response Modeling and Artificial Neural Network for Differentiation of Parkinson's Patients and Subjects Without Evidence of Dopaminergic Deficit.

作者信息

Arrington Leticia, van Dijkman Sven C, Plan Elodie L, Karlsson Mats O

机构信息

Department of Pharmacy, Uppsala University, Uppsala, Sweden.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2025 May;14(5):881-890. doi: 10.1002/psp4.70000. Epub 2025 Mar 5.

Abstract

Approximately 15% of patients suspected of having Parkinson's disease (PD) present dopamine active transporter (DaT) scans without evidence of dopaminergic deficits (SWEDD), most of which will never develop PD. Leveraging Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scores from the Parkinson's Progression Markers Initiative, three different models of varying complexity, (total score, item response theory (IRT) and artificial neural network (ANN)) were evaluated to determine their ability to differentiate between PD and SWEDDs. Each of the models provided as output a predicted probability of having PD (P). Both the IRT and ANN methods performed well as classifiers; ROC AUC > 80%, sensitivity > 93%, and precision ~90% when assuming a probability cutoff of P ≥ 50%. Specificity was 43% and 38% for IRT and ANN respectively. Matthews correlation coefficient (MCC) was also evaluated as a metric to address potential bias of majority positive class. At all cutoffs at or above 50%, the IRT and ANN model performed similarly and achieved a MCC of at least 0.3, indicating at least a moderate positive relationship for classifier performance. In contrast, the total score model was a poor classifier, for all metrics and cutoffs. Using item-level data the proposed methodologies differentiated PD patients from SWEDDs with a degree of sensitivity and specificity that may compete with clinical examination and could aid in selecting DaTscan candidates. The choice of cutoff criteria, quality metric, and classifier model are contingent upon specific clinical needs.

摘要

约15%疑似帕金森病(PD)的患者进行多巴胺活性转运体(DaT)扫描时未发现多巴胺能缺陷证据(SWEDD),其中大多数患者永远不会发展为PD。利用帕金森病进展标志物倡议中的运动障碍协会统一帕金森病评定量表(MDS-UPDRS)评分,评估了三种不同复杂度的模型(总分、项目反应理论(IRT)和人工神经网络(ANN))区分PD和SWEDD的能力。每个模型输出的是患PD的预测概率(P)。IRT和ANN方法作为分类器表现良好;当假设概率临界值P≥50%时,ROC曲线下面积>80%,灵敏度>93%,精确度约为90%。IRT和ANN的特异性分别为43%和38%。马修斯相关系数(MCC)也作为一种指标进行评估,以解决多数阳性类别的潜在偏差。在所有50%及以上的临界值下,IRT和ANN模型表现相似,MCC至少为0.3,表明分类器性能至少有中度正相关关系。相比之下,总分模型在所有指标和临界值下都是较差的分类器。使用项目级数据,所提出的方法以一定程度的灵敏度和特异性区分了PD患者和SWEDD患者,其程度可能与临床检查相当,并有助于选择DaT扫描候选者。临界标准、质量指标和分类器模型的选择取决于特定的临床需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89a9/12072227/70309ec04dff/PSP4-14-881-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验